Custom implants for the reconstruction of craniofacial defects have gained importance due to better performance over their generic counterparts. This is due to the precise adaptation to the region of implantation, reduced surgical times and better cosmesis. Application of 3D modeling in craniofacial surgery is changing the way surgeons are planning surgeries and graphic designers are designing custom implants. Advances in manufacturing processes and ushering of additive manufacturing for direct production of implants has eliminated the constraints of shape, size and internal structure and mechanical properties making it possible for the fabrication of implants that conform to the physical and mechanical requirements of the region of implantation. This article will review recent trends in 3D modeling and custom implants in craniofacial reconstruction.
Custom implants for the reconstruction of mandibular defects have recently gained importance due to their better performance over their generic counterparts. This is attributed to their precise adaptation to the region of implantation, reduced surgical times, and better cosmesis. Recent introduction of direct digital manufacturing technologies, which enable the fabrication of implants from patient specific data, has opened up a new horizon for the next generation of customized maxillofacial implants. In this article, we discuss a representative volume element based technique in which precisely defined porous implants with customized stiffness values are designed to match the stiffness and weight characteristics of surrounding healthy bone tissue. Dental abutment structures have been incorporated into the mandibular implant. Finite element analysis is used to assess the performance of the implant under masticatory loads. This design strategy lends itself very well to rapid manufacturing technologies based on metal sintering processes.
3D printing (3DP) applications for clinical evaluation, preoperative planning, patient and trainee education, and simulation has increased in the past decade. Most of the applications are found in cardiovascular, head and neck, orthopedic, neurological, urological, and oncological surgical cases. This review has three parts. The first part discusses the technical pathway to realizing a physical model, 3DP considerations in pediatric MRI image acquisition, data and resolution requirements, and related structural segmentation and postprocessing steps needed to generalize both virtual and physical models. Standard practices and processing software used in these processes will be assessed. The second part discusses complementary examples in pediatric applications, including cases from cardiology, neuroradiology, neurology, and neurosurgery, head and neck, orthopedics, pelvic and urological applications, oncological applications, and fetal imaging. The third part explores other 3D printing applications and considerations such as using 3DP to develop tissue‐specific phantoms and devices for testing in the MR environment, to educate patients and their families, to train clinicians and students, and facility requirements for building a 3DP program.Level of Evidence: 5Technical Efficacy: Stage 5J. Magn. Reson. Imaging 2020;51:1641–1658.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.