The Indian Council of Medical Research, in 2013, initiated the Antimicrobial Resistance Surveillance & Research Network (AMRSN) to enable compilation of data on six pathogenic groups on antimicrobial resistance from the country. The overarching aim of this network was to understand the extent and pattern of antimicrobial resistance (AMR) and use this evidence to guide strategies to control the spread of AMR. This article describes the conception and implementation of this AMR surveillance network for India. Also described are the challenges, limitations and benefits of this approach. Data from the Network have shown increasing resistance in Gram-negative bacteria in the hospitals that are part of this network. Combined resistance to third-generation cephalosporins and fluoroquinolones and increasing carbapenem resistance are worrisome, as it has an important bearing on the patients’ outcome and thus needs to be addressed urgently. Data generated through this Network have been used to develop treatment guidelines, which will be supportive in harmonizing treatment practices across the tertiary level healthcare institutions in the country. While, the major benefit of having a surveillance system is the collection of real-time accurate data on AMR including the mechanisms of resistance, representativeness to community, sustaining the current effort and expanding the current activities to next levels of healthcare settings are the major challenges. The data emanating from the network besides providing evidence, expose several gaps and lacunae in the ecosystem and highlight opportunities for action by multiple stakeholders.
Antimicrobial resistance (AMR) in India has become a great threat because of high rate of infectious diseases. One of the key contributing factors is high antibiotic use due to poor prescription practices, self-medication, over-the-counter sale of drugs and lack of awareness. Antimicrobial stewardship programme (AMSP) have been proved to be successful in restraining sale and use of antibiotics to a large extent in many countries. An AMSP programme for a hospital is imperative for rational and evidence-based antimicrobial therapy. The ultimate aim is to improve patient outcomes, reduce emergence of bacterial resistance and ensure longevity of the existing antimicrobials. The primary goal of AMSP is to encourage cautious use of available antibiotics by training the healthcare workers and creating awareness. This article describes the strategies and recommendations for formulation of AMSP policy for India.
Acid ceramidase is the key enzyme of the ceramide metabolic pathway, which plays a vital role in regulating ceramide - sphingosine-1-phosphate rheostat. Ceramide acts as a proapoptotic molecule, but its metabolite sphingosine-1-phosphate, in contrast, signals for cell proliferation, cell survival, and angiogenesis. Acid ceramidase is highly upregulated in breast tumors and treatment with an acid ceramidase inhibitor, ceranib-2, significantly induced apoptosis in human breast cancer cell lines. However, the mechanisms underlying the induction of apoptosis remain ambiguous to date. Hence, in the present study, we have explored ceranib-2-mediated apoptotic signaling pathways in human breast cancer cell lines. MCF-7 and MDA MB-231 cells were treated with IC50 doses of ceranib-2 and tamoxifen. Nuclear changes showed the apoptotic effect of ceranib-2 in both the cell lines. Loss in the mitochondrial membrane potential was observed only in ceranib-2-treated MCF-7 cells. Ceranib-2 activated intrinsic and extrinsic apoptotic pathways in MCF-7 cells, but only the extrinsic apoptotic pathway was activated in MDA MB-231 cells. Further, ceranib-2 induced apoptosis by activating SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase), p38 MAPK (mitogen-activated protein kinase) apoptotic pathways and by inhibiting the Akt (antiapoptotic) pathway in both the cell lines. Most importantly, ERα (estrogen receptor-α) expression was highly downregulated after ceranib-2 treatment and a docking study predicted the highest binding affinity of ceranib-2 than tamoxifen with ERα in MCF-7 cells. Hence, ceranib-2 may have potential as a chemotherapeutic drug of breast cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.