This work explores the rapid synthesis of silver nanoparticles (AgNPs) from Musa paradisiaca (M. paradisiaca) bract extract. The bio-reduction of Ag + ion was recorded using ultraviolet-visible spectroscopy by a surface plasmon resonance extinction peak with an absorbance at 420 nm. The phytoconstituents responsible for the reduction of AgNPs was probed using Fourier transform infrared spectroscopy. The X-ray diffraction pattern confirmed the formation of crystalline AgNPs that were analogous to selected area electron diffraction patterns. Morphological studies showed that the obtained AgNPs were monodispersed with an average size of 15 nm. The biologically synthesised AgNPs showed higher obstruction against tested phytopathogens. The synthesised AgNPs exhibited higher inhibitory zone against fungal pathogen Alternaria alternata and bacterial pathogen Pseudomonas syringae. Free radical scavenging potential of AgNPs was investigated using 1,1-diphenyl-2picryl hydroxyl and 2,2-azinobis (3-ethylbenzothiazoline)-6-sulphonic acid assays which revealed that the synthesised AgNPs act as a potent radical scavenger. The catalytic efficiency of the synthesised AgNPs was investigated for azo dyes, methyl orange (MO), methylene blue (MB) and reduction of o-nitrophenol to o-aminophenol. The results portrayed that AgNPs act as an effective nanocatalyst to degrade MO to hydrazine derivatives, MB to leucomethylene blue, and o-nitro phenol to o-amino phenol
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.