Abstract. This study was conducted with 3 objectives in mind: first, to identify the toxic fraction (aqueous or organic) in leaves and flowers; second, to identify diagnostic marker(s) of toxicosis in cats; and, third, to evaluate the morphologic effects of intoxication. The study was conducted in 2 phases. Phase 1 was to identify which extract, organic or aqueous, was nephrotoxic and also to determine the appropriate dose for use in the phase 2 studies. Results indicated that only the aqueous extracts of leaves and flowers were nephrotoxic and pancreotoxic. To identify the proximate toxic compound, cats in the phase 2 study were orally exposed to subfractions of the aqueous flower extract, 1 subfraction per cat. Results confirmed vomiting, depression, polyuria, polydipsia, azotemia, glucosuria, proteinuria, and isosthenuria as toxic effects of the Easter lily plant. Another significant finding in serum was elevated creatinine kinase. Significant histologic kidney changes included acute necrosis of proximal convoluted tubules and degeneration of pancreatic acinar cells. Renal ultrastructural changes included swollen mitochondria, megamitochondria, edema, and lipidosis. Subfraction IIa 3 of the aqueous floral extract contained most of the toxic compound(s). These studies reproduced the clinical disease, identified the most toxic fraction of the Easter lily, and helped characterize the clinical pathology, histopathology, and ultrastructural pathology associated with the disease.
Guggulu, the gum resin from Commiphora mukul, is one of the components of various formulations of traditional Ayurvedic medicine to treat inflammation, obesity, and lipid disorders. In most preparations of Ayurvedic medicine in India, guggulu is boiled prior to its use. Therefore, guggulu was boiled with H2O prior to extractions in our study. Bioassay-guided isolation of compounds from the hexane-soluble portion of the MeOH extract of guggulu yielded cembrenoids, 1-6, a bicyclic diterpene, 7, guggulusterone derivatives, 8-11, myrrhanone derivatives, 12, myrrhanol derivative, 13, and a lignan, 14. The structures of these compounds were confirmed by spectroscopic methods. Compounds 5, 6, 7, 10, and 12-14 are novel. These compounds were assayed for lipid peroxidation and cyclooxygenase (COX) enzyme inhibitory activities. At 100 ppm, compounds 3, 6, and 14 inhibited the lipid peroxidation by 79, 57, and 58%, respectively, and the rest of isolated compounds showed 20-40% inhibitory activity with respect to the controls. In COX-1 and COX-2 enzyme inhibitory assays, compound 3 showed 79 and 83%, and compound 8 gave 67 and 54% of inhibition, respectively, at 100 ppm. All fourteen compounds inhibited COX-1 enzyme at 100 ppm. The lipid peroxidation and COX enzyme inhibitory activities exhibited by compounds isolated from C. mukul may substantiate its use in traditional medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.