<p>Network traffic as it is VBR in nature exhibits strong correlations which make it suitable for prediction. Real-time forecasting of network traffic load accurately and in a computationally efficient manner is the key element of proactive network management and congestion control. This paper comments on the MPEG-4 video traffic predictions evaluated by different types of neural network architectures and compares the performance of the same in terms of mean square error for the same video frames. For that three types of neural architectures are used namely Feed forward, Cascaded Feed forward and Time Delay Neural Network. The results show that cascade feed forward network produces minimum error as compared to other networks. This paper also compares the results of traditional prediction method of averaging of frames for future frame prediction with neural based methods. The experimental results show that nonlinear prediction based on NNs is better suited for traffic prediction purposes than linear forecasting models.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.