Toxic conversations during software development interactions may have serious repercussions on a Free and Open Source Software (FOSS) development project. For example, victims of toxic conversations may become afraid to express themselves, therefore get demotivated, and may eventually leave the project. Automated filtering of toxic conversations may help a FOSS community to maintain healthy interactions among its members. However, off-the-shelf toxicity detectors perform poorly on Software Engineering (SE) dataset, such as one curated from code review comments. To encounter this challenge, we present
ToxiCR
, a supervised learning-based toxicity identification tool for code review interactions. ToxiCR includes a choice to select one of the ten supervised learning algorithms, an option to select text vectorization techniques, eight preprocessing steps, and a large scale labeled dataset of 19,651 code review comments. Two out of those eight preprocessing steps are SE domain specific. With our rigorous evaluation of the models with various combinations of preprocessing steps and vectorization techniques, we have identified the best combination for our dataset that boosts 95.8% accuracy and 88.9%
F
1
1
score. ToxiCR significantly outperforms existing toxicity detectors on our dataset. We have released our dataset, pretrained models, evaluation results, and source code publicly available at: https://github.com/WSU-SEAL/ToxiCR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.