Want to stay updated on the latest news in Emerging Infectious Diseases? Let us connect you to the world of global health. Discover groundbreaking research studies, pictures, podcasts, and more by following us on Twitter at @CDC_EIDjournal.
Monkeypox virus, the causative agent of the 2022 monkeypox outbreak, is a double-stranded DNA virus in the Orthopoxvirus genus of the Poxviridae family. Genes in terminal regions of Orthopoxvirus genomes mostly code for host-pathogen interaction proteins and are prone to selective pressure and modification events. Using viral whole genome sequencing, we identified twenty-five total clinical samples with ORF-disrupting mutations, including twenty samples encoding nonsense mutations in MPXVgp001/191 (OPG001), MPXVgp004/188 (OPG015), MPXVgp010 (OPG023), MPXVgp030 (OPG042), MPXVgp159 (OPG0178), or MPXVgp161 (OPG181). Additional mutations include a frameshift leading to an alternative C-terminus in MPXVgp010 (OPG023) and an insertion in an adenine homopolymer at the beginning of the annotated ORF for MPXVgp153 (OPG151), encoding a subunit of the RNA polymerase, suggesting the virus may instead use the start codon that encodes Met9 as annotated. Finally, we detected three samples with large (>900 bp) deletions. These included a 913 bp deletion that truncates the C-terminus of MPXVgp010 (OPG023); a 4205 bp deletion that eliminates MPXVgp012 (OPG025), MPXVgp013 (OPG027), and MPXVgp014 (OPG029) and truncates MPXVgp011 (OPG024; D8L) and MPXVgp015 (OPG030); and a 6881 bp deletion that truncates MPXVgp182 (OPG210) and eliminates putative ORFs MPXVgp184, MPXVgp185 (OPG005), and MPXVgp186, as well as MPXVgp187 (OPG016), and MPXVgp188 (OPG015) from the 3’ ITR only. MPXVgp182 encodes the monkeypox-specific, highly immunogenic surface glycoprotein B21R which has been proposed as a serological target. Overall, we find greater than one-tenth of our sequenced MPXV isolates have at least one gene inactivating mutation and these genes together comprised greater than one-tenth of annotated MPXV genes. Our findings highlight non-essential genes in monkeypox virus that may be evolving as a result of selective pressure in humans, as well as the limitations of targeting them for therapeutics and diagnostic testing.
Mitigation measures against the COVID-19 pandemic affected the RSV seasonality and led to an unexpectedly high number of RSV cases in Washington State since October 2022. Here we describe the RSV genomic characteristics and evolutionary relationship of 2022 outbreak compared to the previous RSV outbreaks in the region and globally.
Background Rhinovirus (RV) is a common cause of respiratory illness in all people, including those experiencing homelessness. RV epidemiology in homeless shelters is unknown. Methods We analyzed data from a cross-sectional homeless shelter study in King County, Washington, October 2019-May 2021. Shelter residents or guardians aged ≥3 months reporting acute respiratory illness completed questionnaires and submitted nasal swabs. After April 1, 2020, enrollment expanded to residents and staff regardless of symptoms. Samples were tested by multiplex RT-PCR for respiratory viruses. A subset of RV-positive samples was sequenced. Results There were 1,066 RV-positive samples with RV present every month of the study period. RV was the most common virus before and during the COVID-19 pandemic (43% and 77% of virus-positive samples, respectively). Participants from family shelters had the highest prevalence of RV. Among 131 sequenced samples, 33 RV serotypes were identified with each serotype detected for ≤4 months. Conclusions RV infections persisted through community mitigation measures and was most prevalent in shelters housing families. Sequencing showed a diversity of circulating RV serotypes each detected over short periods of time. Community-based surveillance in congregate settings is important to characterize respiratory viral infections during and after the COVID-19 pandemic.
We conducted a genomic analysis of monkeypox virus sequences collected early in the 2022 outbreak, during July–August , in Washington, USA. Using 109 viral genomes, we found low overall genetic diversity, multiple introductions into the state, ongoing community transmission, and potential for co-infections by multiple strains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.