The rings considered in this article are commutative with identity 1 = 0. Recall that the unit graph of a ring R is a simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x, y are adjacent in this graph if and only if x + y ∈ U(R) where U(R) is the set of unit elements of ring R. We denote this graph by UG(R). In this article we classified local ring R such that UG(R) is planar.
The rings considered in this article are commutative with identity 1 = 0. Recall that the unit graph of a ring R is a simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x, y are adjacent in this graph if and only if x + y ∈ U(R) where U(R) is the set of all unit elements of ring R. We denote this graph by UG(R). In this article we classified rings R with |Max(R)| = 2 such that UG(R) is planar.
The rings considered in this article are commutative with identity 1 = 0. Recall that the unit graph of a ring R is a simple undirected graph whose vertex set is the set of all elements of the ring R and two distinct vertices x, y are adjacent in this graph if and only if x + y ∈ U(R) where U(R) is the set of all unit elements of ring R. We denote this graph by UG(R). In this article we classified rings R with |Max(R)| ≥ 3 such that UG(R) is planar.
The rings considered in this article are commutative with identity which admit at least two maximal ideals. Let R be a ring such that R admits at least two maximal ideals. Recall from Ye and Wu (J. Algebra Appl. 11(6): 1250114, 2012) that the comaximal ideal graph of R, denoted by C (R) is an undirected simple graph whose vertex set is the set of all proper ideals I of R such that I ⊆ J(R), where J(R) is the Jacobson radical of R and distinct vertices I1, I2 are joined by an edge in C (R) if and only if I1 + I2 = R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.