The deprotection of chiral 1,2-bis(tosylamides) to their corresponding 1,2-diamines is mostly unsuccessful under standard conditions. In a new methodology, the use of Mg/MeOH with sufficient steric additions allows the facile synthesis of 1,2-diamines in 78−98% yields. These results are rationalized using density functional theory and the examination of inner and outer-sphere reduction mechanisms.Note pubs.acs.org/joc
Phosphorus 3‐membered heterocycles, phosphiranes, provide an interesting synthetic scaffold with a potentially diverse range of reactions that are currently underexplored. This is in part due to their difficulty in synthesis, with many products and intermediates containing low air stability. With the application and extension of a density functional theory (DFT) model to phosphiranes by calculation at the UB3LYP/6‐31G(d) level of their radical cation singly occupied molecular orbital (SOMO), a correlation between calculated and relative experimental air stability has been demonstrated. The model also accounts for the stability of many synthesised substituted and unsubstituted phosphiranes and has allowed new synthetic targets to be identified, in particular, 1‐(2,4,6‐tri‐tert‐butoxyphenyl)phosphirane exhibited high theoretical air stability. Because of the simplicity and efficiency of the model, its application enables phosphiranes to be screened for high bench stability, providing accessibility for their use in synthetic chemistry, in turn, realising the potential for incorporation of phosphiranes into complex synthetic strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.