In the present study, identification of chiral 1,3,4-oxadiazol-2-ones as potent and selective FAAH inhibitors has been described. The separated enantiomers showed clear differences in the potency and selectivity toward both FAAH and MAGL. Additionally, the importance of the chirality on the inhibitory activity and selectivity was proven by the simplification approach by removing a methyl group at the 3-position of the 1,3,4-oxadiazol-2-one ring. The most potent compound of the series, the S-enantiomer of 3-(1-(4-isobutylphenyl)ethyl)-5-methoxy-1,3,4-oxadiazol-2(3H)-one (JZP-327A, 51), inhibited human recombinant FAAH (hrFAAH) in the low nanomolar range (IC50 = 11 nM), whereas its corresponding R-enantiomer 52 showed only moderate inhibition toward hrFAAH (IC50 = 0.24 μM). In contrast to hrFAAH, R-enantiomer 52 was more potent in inhibiting the activity of hrMAGL compared to S-enantiomer 51 (IC50 = 4.0 μM and 16% inhibition at 10 μM, respectively). The FAAH selectivity of the compound 51 over the supposed main off-targets, MAGL and COX, was found to be >900-fold. In addition, activity-based protein profiling (ABPP) indicated high selectivity over other serine hydrolases. Finally, the selected S-enantiomers 51, 53, and 55 were shown to be tight binding, slowly reversible inhibitors of the hrFAAH.
BackgroundHuman lymphocyte antigen B-associated transcript 5 (BAT5, also known as ABHD16A) is a poorly characterized 63 kDa protein belonging to the α/β-hydrolase domain (ABHD) containing family of metabolic serine hydrolases. Its natural substrates and biochemical properties are unknown.Methodology/Principal FindingsAmino acid sequence comparison between seven mammalian BAT5 orthologs revealed that the overall primary structure was highly (≥95%) conserved. Activity-based protein profiling (ABPP) confirmed successful generation of catalytically active human (h) and mouse (m) BAT5 in HEK293 cells, enabling further biochemical characterization. A sensitive fluorescent glycerol assay reported hBAT5-mediated hydrolysis of medium-chain saturated (C14∶0), long-chain unsaturated (C18∶1, C18∶2, C20∶4) monoacylglycerols (MAGs) and 15-deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G). In contrast, hBAT5 possessed only marginal diacylglycerol (DAG), triacylglycerol (TAG), or lysophospholipase activity. The best MAG substrates were 1-linoleylglycerol (1-LG) and 15d-PGJ2-G, both exhibiting low-micromolar Km values. BAT5 had a neutral pH optimum and showed preference for the 1(3)- vs. 2-isomers of MAGs C18∶1, C18∶2 and C20∶4. Inhibitor profiling revealed that β-lactone-based lipase inhibitors were nanomolar inhibitors of hBAT5 activity (palmostatin B > tetrahydrolipstatin > ebelactone A). Moreover, the hormone-sensitive lipase inhibitor C7600 (5-methoxy-3-(4-phenoxyphenyl)-3H-[1], [3], [4]oxadiazol-2-one) was identified as a highly potent inhibitor (IC50 8.3 nM). Phenyl and benzyl substituted analogs of C7600 with increased BAT5 selectivity were synthesized and a preliminary SAR analysis was conducted to obtain initial insights into the active site dimensions.Conclusions/SignificanceThis study provides an initial characterization of BAT5 activity, unveiling the biochemical and pharmacological properties with in vitro substrate preferences and inhibitor profiles. Utilization of glycerolipid substrates and sensitivity to lipase inhibitors suggest that BAT5 is a genuine lipase with preference for long-chain unsaturated MAGs and could in this capacity regulate glycerolipid metabolism in vivo as well. This preliminary SAR data should pave the way towards increasingly potent and BAT5-selective inhibitors.
The human constitutive androstane receptor (CAR, NR1I3) is one of the key regulators of xenobiotic and endobiotic metabolism. The unique properties of human CAR, such as the high constitutive activity and the complexity of signaling, as well as the lack of functional and predictive cell-based assays to study the properties of the receptor, have hindered the discovery of selective human CAR ligands. Here we report a novel human CAR inverse agonist, 1-[(2-methylbenzofuran-3-yl)methyl]-3-(thiophen-2-ylmethyl) urea (S07662), which suppresses human CAR activity, recruits the corepressor NCoR in cell-based assays, and attenuates the phenytoin- and 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO)-induced expression of CYP2B6 mRNA in human primary hepatocytes. The properties of S07662 are also compared with those of known human CAR inverse agonists by using an array of different in vitro and in silico assays. The identified compound S07662 can be used as a chemical tool to study the biological functions of human CAR and also as a starting point for the development of new drugs for various conditions involving the receptor.
At present, inhibitors of α/β-hydrolase domain 6 (ABHD6) are viewed as a promising approach to treat inflammation and metabolic disorders. This article describes the optimization of 1,2,5-thiadiazole carbamates as ABHD6 inhibitors. Altogether, 34 compounds were synthesized and their inhibitory activity was tested using lysates of HEK293 cells transiently expressing human ABHD6 (hABHD6). Among the compound series, 4-morpholino-1,2,5-thiadiazol-3-yl cyclooctyl(methyl)carbamate (JZP-430, 55) potently and irreversibly inhibited hABHD6 (IC50 44 nM) and showed good selectivity (∼230 fold) over fatty acid amide hydrolase (FAAH) and lysosomal acid lipase (LAL), the main off-targets of related compounds. Additionally, activity-based protein profiling (ABPP) indicated that compound 55 (JZP-430) displayed good selectivity among the serine hydrolases of mouse brain membrane proteome.
The endocannabinoid system remains an attractive molecular target for pharmacological intervention due to its roles in the central nervous system in learning, thinking, emotional function, regulation of food intake or pain sensation, as well as in the peripheral nervous system, where it modulates the action of cardiovascular, immune, metabolic or reproductive function. α/β hydrolase domain containing 6 (ABHD6)—an enzyme forming part of the endocannabinoid system—is a newly discovered post-genomic protein acting as a 2-AG (2-arachidonoylglycerol) serine hydrolase. We have recently reported a series of 1,2,5-thiadiazole carbamates as potent and selective ABHD6 inhibitors. Here, we present comparative molecular field analysis (CoMFA) and molecular dynamics studies of these compounds. First, we performed a homology modeling study of ABHD6 based on the assumption that the catalytic triad of ABHD6 comprises Ser148–His306–Asp 278 and the oxyanion hole is formed by Met149 and Phe80. A total of 42 compounds was docked to the homology model using the Glide module from the Schrödinger suite of software and the selected docking poses were used for CoMFA alignment. A model with the following statistics was obtained: R2 = 0.98, Q2 = 0.55. In order to study the molecular interactions of the inhibitors with ABHD6 in detail, molecular dynamics was performed with the Desmond program. It was found that, during the simulations, the hydrogen bond between the inhibitor carbonyl group and the main chain of Phe80 is weakened, whereas a new hydrogen bond with the side chain of Ser148 is formed, facilitating the possible formation of a covalent bond.Graphical Abstract Left–right: Docking pose of 1 in the binding pocket of α/β hydrolase domain containing 6 (ABHD6) selected for molecular alignment; CoMFA steric and electrostatic contour fields; changes in potential energy of the complex during simulations for the complex of 6 and ABHD6Electronic supplementary materialThe online version of this article (doi:10.1007/s00894-015-2789-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.