A stochastic Gompertz diffusion model for tumor growth is a topic of active interest as cancer is a leading cause of death in Korea. The direct maximum likelihood estimation of stochastic differential equations would be possible based on the continuous path likelihood on condition that a continuous sample path of the process is recorded over the interval. This likelihood is useful in providing a basis for the so-called continuous record or infill likelihood function and infill asymptotic. In practice, we do not have fully continuous data except a few special cases. As a result, the exact ML method is not applicable. In this paper we proposed a method of parameter estimation of stochastic Gompertz differential equation via Markov chain Monte Carlo methods that is applicable for several data structures. We compared a Markov transition data structure with a data structure that have an initial point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.