Chennai and its surrounding region received extreme rainfall on 1 December 2015. A rain gauge in the city recorded 494 mm of rainfall within a span of 24 h—at least a 100-yr event. The convective system was stationary over the coast during the event. This study analyzes how the Eastern Ghats orography and moist processes localized the rainfall. ERA-Interim data show a low-level easterly jet (LLEJ) over the adjacent ocean and a barrier jet over the coast during the event. A control simulation with the nonhydrostatic Weather Research and Forecasting (WRF) Model shows that the Eastern Ghats obstructed the precipitation-driven cold pool from moving downstream, resulting in the cold pool piling up and remaining stationary in the upwind direction. The cold pool became weak over the ocean. It stratified the subcloud layer and decelerated the flow ahead of the orography; hence, the flow entered a blocked regime. Maximum deceleration of the winds and uplifting happened at the edge of the cold pool over the coast. Therefore, a stationary convective system and maximum rainfall occurred at the coast. As a result of orographic blocking, propagation of a low pressure system (LPS) was obstructed. Because of the topographic β effect, the LPS subsequently traveled a southward path. In a sensitivity experiment without the orography, the cold pool was swept downstream by the winds; clouds moved inland. In the second experiment with no evaporative cooling of rain, the cold pool did not form; flow, as well as clouds, moved over the orography.
Synoptic-scale weather systems are often responsible for initiating mesoscale convective systems (MCSs). Here, we explore how synoptic forcing influences MCS characteristics, such as the maximum size, lifespan, cloud-top height, propagation speed, and triggering over the Indian region. We used 30-min interval infrared (IR) data of the Indian Kalpana-1 geostationary satellite. Cloud systems (CSs) in this data are identified and tracked using an object tracking algorithm. ERA-Interim 850-hPa vorticity is taken as a proxy for the synoptic forcing. The probability of CSs being larger, longer lived, and deeper is more in the presence of a synoptic-scale vorticity field; however, the influence of synoptic forcing is not evident on the westward propagation of CSs over land. There exists a linear relationship between maximum size, lifespan, and average cloud-top height of CSs regardless of the nature of synoptic forcing. Formation of CSs peaks around 1500 LST over land, which is independent of synoptic forcing. Over the north Bay of Bengal, CSs formation is predominantly nocturnal when synoptic forcing is strong, whereas, 0300 and 1200 LST are the preferred times when synoptic forcing is weak. Long-lived CSs are preferentially triggered in the western flank of the 850-hPa vorticity gradient field of a monsoon low pressure system. Once triggered, CSs propagate westward and ahead of the synoptic system and dissipate around midnight. Formation of new CSs on the next day occurs in the afternoon hours in the wake of previous day’s CSs and where vorticity gradient is also present. Formation and westward propagations of CSs on successive days move the synoptic envelope westward.
Variations in the character of monsoonal rainfall over the Western Ghats region on the west coast of India are studied using radiosondes, satellite observations, and reanalysis products. Summer monsoon rainfall over this region occurs in alternate offshore and onshore phases. It is shown that these phases are controlled primarily by the strength of the low-level westerly jet. Thus, a classification based on the Froude number, F = U∕NH, of the onshore flow is proposed, where, H is the mountain height, U is the mean wind speed, and N is the mean Brunt-Väisäla frequency over depth H. At low F (< 0.5), onshore winds are weak and the diurnal thermal fluctuation over the orography is strong; the land-sea and mountain-valley circulations are enhanced, leading to a stronger diurnal control over the rainfall. A nocturnal offshore propagation of rainfall from the west coast is seen during this phase. Rainfall over the rainshadow region to the east of the Western Ghats also increases, due to a weaker lee effect, while it decreases over the Western Ghats, due to a greater blocking effect. At high F (> 1), orographic blocking of the low-level winds is weak. Thus, rainfall is enhanced over the Western Ghats and reduced over the rainshadow region due to a stronger lee effect. In this phase, the diurnal thermal fluctuation over the orography is weak. The bulk Richardson number is less than 1, suggesting a dominance of vertical wind shear over the buoyancy forces. The level of free convection and convective inhibition over the west coast are also very low. Hence, at high F, rainfall over the west coast results mainly from mechanical uplifting of the westerly winds by the Western Ghats, with no preference for a particular time of day. These findings will help in improving the representation of orographic effects and the diurnal cycle of rainfall in numerical models.
The relationship between eastward propagating convective equatorial signals (CES) along the Equatorial Indian Ocean (EIO) and the northward propagating Monsoon Intraseasonal Oscillations (MISOs) in the Bay of Bengal (BOB) was studied using observational datasets acquired during the 2018 and 2019 MISO-BOB field campaigns. Convective envelopes of MISOs originating from just south of the BOB were associated with both strong and weak eastward CES (average speed ~ 6.4 m/s). Strong CES contributed to ~ 20% of the precipitation budget of BOB, and they spurred northward propagating convective signals that matched the canonical speed of MISOs (1-2 m/s). In contrast, weak CES signals contributed to ~ 14% of the BOB precipitation budget, and they dissipated without significant northward propagation. Eastward propagating Intraseasonal Oscillations (ISOs; period 30-60 days) and Convectively Coupled Kelvin Waves (CCKWs; period 4-15 days) accounted for most precipitation variability across the EIO during the 2019 boreal summer as compared to that of 2018. An agreement could be noted between high moisture content in the mid-troposphere and the active phases of CCKWs and ISOs for two observational locations in the BOB. Basin-scale thermodynamic conditions prior to the arrival of strong/weak CES revealed warmer/cooler SSTs. Flux measurements aboard a research vessel suggest that the evolution of MISOs associated with strong CES are signified by local enhanced air-sea interactions, in particular the supply of local moisture and sensible heat, which could enhance deep convection and further moisten the upper troposphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.