Abstract-Nature is there since millenniums. Natural elements have withstood harsh complexities since years and have proved their efficiency in tackling them. This aspect has inspired many researchers to design algorithms based on phenomena in the natural world since the last couple of decades. Such algorithms are known as natural computing algorithms or nature inspired algorithms. These algorithms have established their ability to solve a large number of real-world complex problems by providing optimal solutions within the reasonable time duration. This paper presents an investigation by assessing the performance of some of the well-known natural computing algorithms with their variations. These algorithms include Genetic Algorithms, Ant Colony Optimization, River Formation Dynamics, Firefly Algorithm and Cuckoo Search. The Traveling Salesman Problem is used here as a test bed problem for performance evaluation of these algorithms. It is a kind of combinatorial optimization problem and known as one the most famous NP-Hard problems. It is simple and easy to understand, but at the same time, very difficult to find the optimal solution in a reasonable time -particularly with the increase in a number of cities. The source code for the above natural computing algorithms is developed in MATLAB R2015b and applied on several TSP instances given in TSPLIB library. Results obtained are analyzed based on various criteria such as tour length, required iterations, convergence time and quality of solutions. Conclusions derived from this analysis help to establish the superiority of Firefly Algorithms over the other algorithms in comparative terms.
The origin of route of text mining is the process of stemming. It is usually used in several types of applications such as Natural Language Processing (NLP), Information Retrieval (IR) and Text Mining (TM) including Text Categorization (TC), Text Summarization (TS). Establish a stemmer effective for the language of Gujarati has been always a search domain hot since the Gujarati has a very different structure and difficult that the other language due to the rich morphology.
The stock market is a complex and dynamic system with noisy, non-stationary and chaotic data series. Prediction of a financial market is more challenging due to chaos and uncertainty of the system. Soft computing techniques are progressively gaining presence in the financial world. Compared to traditional techniques to predict the market direction, soft computing is gaining the advantage of accuracy and speed. However the input data selection is the major issue in soft computing. The aim of this paper is to explain the potential day by day research contribution of soft computing to solve complex problem such as stock market direction prediction. This study paper synthesizes five reference papers and explains how soft computing is gaining the popularity in the field of financial market. The selection of papers are based on various models wich are processing different input parameters for predicting the direction of stock market.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.