Hollow spherical ZnO and hollow ZnO−Ag nanocomposites with variable percentage of loading of Ag content were successfully fabricated through a novel, template free and easily reproducible route. Extensive characterizations were carried out using FTIR, XRD, XPS, BET, TEM and SEM. The hollow morphology of the particle and the composite encouraged a detailed photocatalysis study in comparison to solid commercial ZnO and the corresponding ZnO−Ag composite. The photocatalytic activity of the hollow particle and the composite was assessed monitoring the decolouration of methylene blue dye using UV‐Vis absorption spectroscopic technique. An increased surface area for hollow morphology as compared to solid particles established a conspicuous boost in photocatalytic activity.
Cu nanoparticles were prepared in an aqueous phase by means of a simple reduction-route using sodium borohydride as the reducing agent in the presence of ascorbic acid and polyvinylpyrrolidone (PVP). The hydrosol of the Cu nanoparticles deteriorated within a day. It compelled to initiate a scheme to stabilize the nanoparticles for a long period of time. Phase transfer to organic solvents using Benzyldimethylstearylammonium chloride (BDSAC) as a phase transfer agent was found to be an effective path in this respect. BDSAC performed the dual role of dragging the Cu nanoparticles from water to organic solvent and also acted as a capping agent along with PVP for better stabilization of Cu nanoparticles. The organosol of the Cu nanoparticles exhibited excellent stability and promising catalytic activity towards N-formylation reactions on a number of amine substrates in presence of visible green LED light. The yield and reusability of the catalyst were promising. All the samples were thoroughly characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive analysis of x-rays, x-ray photoelectron spectroscopy and thermo gravimetric analysis .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.