Detailed knowledge of the structure, dynamics, and interionic interactions of ionic liquids (ILs) is critical to understand their physicochemical properties. In this letter, we show that deuterium isotope effects on the chloride ion 35/37Cl NMR signal represent a useful tool in the study of interionic hydrogen bonds in imidazolium chloride ILs. Sizable Delta35/37Cl(H,D) values obtained for the model system 1-n-butyl-3-methylimidazolium chloride ([C4mim]Cl) upon deuteriation of the imidazolium C-2 and C-2,4,5 positions, of nearly 1 and 2 ppm, respectively, show that the approach can readily identify and differentiate Cl...H hydrogen bonds between the anion and cation. Our study is one of a few examples in which hydrogen-bonding in ILs has been investigated using deuterium isotope effects and, to our knowledge, the only one employing 35/37Cl NMR to detect these interactions. The methodology described could be easily extended to the study of other systems bearing NMR-active nuclei.
As a part of our systematic study of foldamer structural elements, we analyze and quantify the conformational behavior of two model compounds based on a frequently used class of aromatic oligoamide building blocks. Combining computational and NMR approaches, we investigate ortho-fluoro- and ortho-chloro-N-methylbenzamide. Our results indicate that the -F substituent in an ortho position can be used to fine-tune the rigidity of the oligomer backbone. It provides a measurably attenuated but still considerably strong hydrogen bond (H-bond) to the peptide group proton when compared to the -OCH3 substituent in the same position. On the other hand, the ortho-Cl substituent does not impose significant restrictions on the flexibility of the backbone. Its effect on the final shape of an oligomer is likely governed by its size rather than by noncovalent intramolecular interactions. Furthermore, the effect of solvent on the conformational preferences of these building blocks has been quantified. The number of intramolecularly H-bonded conformations decreases significantly when going from nonprotic to protic environments. This study will facilitate rational design of novel arylamide foldamers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.