Sequence-specific binding of proteins to their DNA targets involves a complex spectrum of processes that often induce DNA conformational variation in the bound complex. The forces imposed by protein binding that cause the helical deformations are intimately interrelated and difficult to parse or rank in importance. To investigate the role of electrostatics in helical deformation, we quantified the relationship between protein cationic residue density (Cpc) and DNA phosphate crowding (Cpp). The correlation between Cpc and Cpp was then calculated for a subset of 58 high resolution protein–DNA crystal structures. Those structures containing strong Cpc/Cpp correlation (>±0.25) were likely to contain DNA helical curvature. Further, the correlation factor sign predicted the direction of helical curvature with positive (16 structures) and negative (seven structures) correlation containing concave (DNA curved toward protein) and convex (DNA curved away from protein) curvature, respectively. Protein–DNA complexes without significant Cpc/Cpp (36 structures) correlation (-0.25<0<0.25) tended to contain DNA without significant curvature. Interestingly, concave and convex complexes also include more arginine and lysine phosphate contacts, respectively, whereas linear complexes included essentially equivalent numbers of Lys/Arg phosphate contacts. Together, these findings suggest an important role for electrostatic interactions in protein–DNA complexes involving helical curvature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.