Halogenated natural products are frequently reported metabolites in marine seaweeds. These compounds span a range from halogenated indoles, terpenes, acetogenins, phenols, etc., to volatile halogenated hydrocarbons that are produced on a very large scale. In many cases these halogenated marine metabolites possess biological activities of pharmacological interest. Given the abundance of halogenated marine natural products found in marine organisms and their potentially important biological activities, the biogenesis of these compounds has intrigued marine natural product chemists for decades. Over a quarter of a century ago, a possible role for haloperoxidase enzymes was first suggested in the biogenesis of certain halogenated marine natural products, although this was long before haloperoxidases were discovered in marine organisms. Since that time, FeHeme- and Vanadium-haloperoxidases (V-HPO) have been discovered in many marine organisms. The structure and catalytic activity of vanadium haloperoxidases is reviewed herein, including the importance of V-HPO-catalyzed bromination and cyclization of terpene substrates.
Iron concentrations in the ocean are low enough to limit the growth of marine microorganisms, which raises questions about the molecular mechanisms these organisms use to acquire iron. Marine bacteria have been shown to produce siderophores to facilitate iron(III) uptake. We describe the structures of a suite of amphiphilic siderophores, named the amphibactins, which are produced by a nearshore isolate, ␥ Proteobacterium, Vibrio sp. R-10. Each amphibactin has the same Tris-hydroxamatecontaining peptidic headgroup composed of three ornithine residues and one serine residue but differs in the acyl appendage, which ranges from C-14 to C-18 and varies in the degree of saturation and hydroxylation. Although amphiphilic siderophores are relatively rare, cell-associated amphiphilic siderophores are even less common. We find that the amphibactins are cellassociated siderophores. As a result of the variation in the nature of the fatty acid appendage and the cellular location of the amphibactins, the membrane partitioning of these siderophores was investigated. The physiological mixture of amphibactins had a range of membrane affinities (3.8 ؋ 10 3 to 8.3 ؋ 10 2 M ؊1 ) that are larger overall than other amphiphilic siderophores, likely accounting for their cell association. This cell association is likely an important defense against siderophore diffusion in the oceanic environment. The phylogenetic affiliation of Vibrio sp. R-10 is discussed, as well as the observed predominance of amphiphilic siderophores produced by marine bacteria in contrast to those produced by terrestrial bacteria.
Marine red algae (Rhodophyta) are a rich source of bioactive halogenated natural products. The biogenesis of the cyclic halogenated terpene marine natural products, in particular, has attracted sustained interest in part because terpenes are the biogenic precursors of many bioactive metabolites. The first enzymatic asymmetric bromination and cyclization of a terpene, producing marine natural products isolated from red algae, is reported. Vanadium bromoperoxidase (V-BrPO) isolated from marine red algae (species of Laurencia, Plocamium, Corallina) catalyzes the bromination of the sesquiterpene (E)-(+)-nerolidol producing alpha-, beta-, and gamma-snyderol and (+)-3beta-bromo-8-epicaparrapi oxide. alpha-Snyderol, beta-snyderol, and (+)-3beta-bromo-8-epicaparrapi oxide have been isolated from Laurencia obtusa, and each have also been isolated from other species of marine red algae. gamma-Snyderol is a proposed intermediate in other bicyclo natural products. Single diastereomers of beta-snyderol, gamma-snyderol, and mixed diastereomers of (+)-3beta-bromo-8-epicaparrapi oxide (de = 20-25%) are produced in the enzyme reaction, whereas two diastereomers of these compounds are formed in the synthesis with 2,4,4,6-tetrabromocyclohexa-2,5-dienone (TBCO). V-BrPO likely functions by catalyzing the two-electron oxidation of bromide ion by hydrogen peroxide producing a bromonium ion or equivalent in the active site that brominates one face of the terminal olefin of nerolidol. These results establish V-BrPO's role in the biosynthesis of brominated cyclic sesquiterpene structures from marine red algae for the first time.
Marine red algae (Rhodophyta) are a rich source of bioactive halogenated natural products, including cyclic terpenes. The biogenesis of certain cyclic halogenated marine natural products is thought to involve marine haloperoxidase enzymes. Evidence is presented that vanadium bromoperoxidase (V-BrPO) isolated and cloned from marine red algae that produce halogenated compounds (e.g., Plocamium cartilagineum, Laurencia pacifica, Corallina officinalis) can catalyze the bromination and cyclization of terpenes and terpene analogues. The V-BrPO-catalyzed reaction with the monoterpene nerol in the presence of bromide ion and hydrogen peroxide produces a monobromo eight-membered cyclic ether similar to laurencin, a brominated C15 acetogenin, from Laurencia glandulifera, along with noncyclic bromohydrin, epoxide, and dibromoproducts; however, reaction of aqueous bromine with nerol produced only noncyclic bromohydrin, epoxide, and dibromoproducts. The V-BrPO-catalyzed reaction with geraniol in the presence of bromide ion and hydrogen peroxide produces two singly brominated six-membered cyclic products, analogous to the ring structures of alpha and beta snyderols, brominated sesquiterpenes from Laurencia, spp., along with noncyclic bromohydrin, epoxide, and dibromoproducts; again, reaction of geraniol with aqueous bromine produces only noncyclic bromohydrin, epoxide, and dibromoproducts. Thus, V-BrPO can direct the electrophilic bromination and cyclization of terpenes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.