The room-temperature chemisorption, thermal reactivity, and reaction with atomic hydrogen were compared for 1,3-cyclohexadiene, 1,4-cyclohexadiene, and cyclohexene on Si(100)-2×1 using multiple internal reflection Fourier transform infrared (MIR-FTIR) spectroscopy, near-edge X-ray absorption fine structure (NEXAFS), and temperature programmed reaction/desorption techniques. For both dienes, a CdC double bond remains in the chemisorbed product, indicating that surface bonding does not involve both alkene groups in the reactant. For 1,3-cyclohexadiene, multiple chemisorption configurations are implicated, consistent with [4+2] and [2+2] cycloaddition products. The average angle between the π bond in the 1,3-cyclohexadiene adsorbate and the Si(100)-2×1 surface is 35°according to NEXAFS measurements. Upon heating, both cyclohexadienes decompose, resulting in the evolution of benzene at temperatures ranging from 400 to 700 K and release of H 2 from the silicon surface at 780 K, although the behavior differs slightly for the two compounds. IR annealing studies for 1,3-cyclohexadiene confirm that decomposition begins between 400 and 500 K. Following atomic hydrogenation of the chemisorbed C 6 cyclic hydrocarbons, the same vibrational spectra are obtained for cyclohexene, 1,3-cyclohexadiene, 1,4-cyclohexadiene, and benzene; these spectra are also similar to that of chemisorbed cyclohexene. These similarities suggest a common hydrogenation product, whose structure is consistent with a hydrogenated [2+2] adduct, independent of whether before hydrogenation the chemisorbed hydrocarbon formed a [2+2] or [4+2] product.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.