Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
The mechanism of cell cycle withdrawal during terminal differentiation is poorly understood. We report here that the cyclin-dependent kinase (CDK) inhibitor p21ciPl/wAFl is induced at early times ofboth keratinocyte and myoblast differentiation. p2jCiPl/WAF1 induction is accompanied by a drastic inhibition of total Cdk2, as well as p21CiPl/wAFl-associated CDK kinase activities. p21ciPl/wAFl has been implicated in p53-mediated G, arrest and apoptosis.In keratinocyte differentiation, Cipi/WAFi induction is observed even in cells derived from p53-null mice. Similarly, keratinocyte differentiation is associated with induction of
Interleukin 1 (IL-1) is a lymphokine secreted by monocytes in response to a variety of inflammatory stimuli. IL-1fB the predominant form of IL-1 produced by human monocytes, is synthesized as an inactive precursor of 31 kDa and is cleaved at Asp"'6-Ala"17 to yield a 17.5-kDa extracellular form. The exact cellular site of cleavage and mechanism of secretion is at present unknown. We have prepared cell-free postnuclear extracts from freshly isolated human monocytes as well as THP. (1) provided the first substantive evidence that, in a mouse monocyte cell line, IL-1 was synthesized as a cell-associated precursor that could be chased into an extracellular 17-kDa form. Subsequently, reports emerged which suggested that a 31-kDa form of IL-1i3 was associated with human monocytes (2-5) and that this material was cleaved to release the mature form (2, 4, 5). These studies were corroborated by cDNA sequence data from a number of species which indicated that IL-1 mRNA encodes a larger protein than that identified as mature secreted IL-1 (6-10). As precursor IL-183 (pre-IL-1,j)is unable to bind to IL-1 receptors and is biologically inactive (11), some form of proteolytic processing is apparently required to release active IL-1p8. While the kinetics of IL-1 synthesis and secretion has been analyzed in some detail, little has been uncovered about the mechanism by which IL-1 is synthesized, processed, and secreted. Analysis ofthe predicted amino acid sequence from pre-IL-1,3 cDNA has not revealed the presence of a unique hydrophobic signal sequence domain, common to most secreted proteins (6)(7)(8)(9)(10)12). The N-terminal amino acid of mature monocyte IL-1p from humans has been sequenced by a number of investigators as Ala"17 (6, 13), suggesting that a cleavage site exists between Asp'6 and Ala"7. While the first 116 residues may be considered a signal sequence of sorts, it is not recognized as such by otherwise competent endoplasmic reticulum membranes (G.L., unpublished observation). Young et al. (14) showed that mature pre-IL-1P was not secreted from hamster fibroblasts that were stably transformed with pre-IL-1,i cDNA. Instead, large amounts of the precursor accumulated in the cytoplasm of the cell (14). Lomedico et al. (12) The processing of IL-1f3 has recently been investigated by using purified recombinant precursor as a substrate (5, 17).Hazuda et al. (5) showed that pre-IL-1f3, when added to intact human blood monocytes, was not cleaved or processed in any fashion, arguing against an extracellular site of processing. In another report, a potential pre-IL-1,8 cleavage activity was identified in a pelletable compartment of KG-1 cells, a neutrophil-like cell line. This enzymatic activity was able to generate IL-1 activity of similar size to authentic IL-1 from a partially purified pre-IL-1f3 substrate (17). However, the products were not sequenced and the site ofcleavage was not identified.In this report, we describe an in vitro processing system in which mature 17.
The chemokine receptors CCR5 and CXCR4 act synergistically with CD4 in an ordered multistep mechanism to allow the binding and entry of human immunodeficiency virus type 1 (HIV-1). The efficiency of such a coordinated mechanism depends on the spatial distribution of the participating molecules on the cell surface. Immunoelectron microscopy was performed to address the subcellular localization of the chemokine receptors and CD4 at high resolution. Cells were fixed, cryoprocessed, and frozen; 80-nm cryosections were double labeled with combinations of CCR5, CXCR4, and CD4 antibodies and then stained with immunogold. Surprisingly, CCR5, CXCR4, and CD4 were found predominantly on microvilli and appeared to form homogeneous microclusters in all cell types examined, including macrophages and T cells. Further, while mixed microclusters were not observed, homogeneous microclusters of CD4 and the chemokine receptors were frequently separated by distances less than the diameter of an HIV-1 virion. Such distributions are likely to facilitate cooperative interactions with HIV-1 during virus adsorption to and penetration of human leukocytes and have significant implications for development of therapeutically useful inhibitors of the entry process. Although the mechanism underlying clustering is not understood, clusters were observed in small trans-Golgi vesicles, implying that they were organized shortly after synthesis and well before insertion into the cellular membrane. Chemokine receptors normally act as sensors, detecting concentration gradients of their ligands and thus providing directional information for cellular migration during both normal homeostasis and inflammatory responses. Localization of these sensors on the microvilli should enable more precise monitoring of their environment, improving efficiency of the chemotactic process. Moreover, since selectins, some integrins, and actin are also located on or in the microvillus, this organelle has many of the major elements required for chemotaxis.Human immunodeficiency virus (HIV) therapies have been highly successful in slowing disease progression, increasing health and well-being, and prolonging life. However, viral resistance is now becoming common, and since most existing drugs target only two viral proteins, reverse transcriptase and protease, cross-resistance is a significant problem. One solution to the issue of resistance is development of new complementary therapies based on novel mechanisms of action. The discovery that the chemokine receptors CCR5 and CXCR4, in addition to CD4, are required for viral entry not only furthered understanding of the fusion and infection process but provided two new targets for therapeutic intervention (3,12,14,17,18,22,44).The entry mechanism as currently understood is an ordered process in which the viral envelope protein, gp120, following interaction with CD4, undergoes a conformational change allowing binding to the appropriate chemokine receptor, CCR5 for macrophagetropic or R5 strains, and CXCR4 for T-celltropic or X4 s...
The activation of T lymphocytes requires their stimulation via clonotypic antigen receptors as well as nonantigen-specific costimulators, the best defined of which is the cytokine interleukin 1 (IL-1). Recent studies have shown that murine CD4+ helper T lymphocytes consist of two nonoverlapping subsets that selectively utilize interleukin 2 (IL-2) or interleukin 4 as their autocrine growth factors and are called Thl and Th2 cells, respectively. We now show that ILfunctions as a costimulator for the proliferation of Th2 but not ofThl clones and only Th2 cells express high-affinity receptors for IL-1. Secretion of autocrine growth-promoting lymphokines by Thl and Th2 cells occurs after stimulation via the antigen receptor-CD3 complex and is neither dependent on nor affected by IL-1. These findings suggest that the activation of T lymphocytes can be divided into two stages, lymphokine secretion and proliferation, and only proliferation requires costimulators such as IL-1. Moreover, the prevailing view that IL-1 functions as a costimulator by inducing secretion of IL-2 or expression ofIL-2 receptors may not be generally applicable, because IL-2-producing Thl clones do not express receptors for IL-1 and are insensitive to this cytokine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.