The ability to enhance photosynthetic capacity remains a recognized bottleneck to improving plant productivity. Phototropin blue light receptors (phot1 and phot2) optimize photosynthetic efficiency in Arabidopsis thaliana by coordinating multiple light-capturing processes. In this study, we explore the potential of using protein engineering to improve photoreceptor performance and thereby plant growth. We demonstrate that targeted mutagenesis can decrease or increase the photocycle lifetime of Arabidopsis phototropins in vitro and show that these variants can be used to reduce or extend the duration of photoreceptor activation in planta. Our findings show that slowing the phototropin photocycle enhanced several light-capturing responses, while accelerating it reduced phototropin’s sensitivity for chloroplast accumulation movement. Moreover, plants engineered to have a slow-photocycling variant of phot1 or phot2 displayed increased biomass production under low-light conditions as a consequence of their improved sensitivity. Together, these findings demonstrate the feasibility of engineering photoreceptors to manipulate plant growth and offer additional opportunities to enhance photosynthetic competence, particularly under suboptimal light regimes.
Hypocotyl phototropism of etiolated Arabidopsis seedlings is primarily mediated by the blue-light receptor kinase phototropin 1 (phot1). Phot1-mediated curvature to continuous unilateral blue light irradiation (0.5 μmol m−2 s−1) is enhanced by overhead pre-treatment with red light (20 μmol m−2 s−1 for 15 min) through the action of phytochrome (phyA). Here, we show that pre-treatment with blue light is equally as effective in eliciting phototropic enhancement and is dependent on phyA. Although blue light pre-treatment was sufficient to activate early phot1 signaling events, phot1 autophosphorylation in vivo was not found to be saturated, as assessed by subsequently measuring phot1 kinase activity in vitro. However, enhancement effects by red and blue light pre-treatment were not observed at higher intensities of phototropic stimulation (10 μmol m−2 s−1). Phototropic enhancement by red and blue light pre-treatments to 0.5 μmol m−2 s−1 unilateral blue light irradiation was also lacking in transgenic Arabidopsis where PHOT1 expression was restricted to the epidermis. Together, these findings indicate that phyA-mediated effects on phot1 signaling are restricted to low intensities of phototropic stimulation and originate from tissues other than the epidermis.
The phototropins (phots) are light-activated kinases that are critical for plant physiology and the many diverse optogenetic tools that they have inspired. Phototropins combine two blue-light-sensing Light–Oxygen–Voltage (LOV) domains (LOV1 and LOV2) and a C-terminal serine/threonine kinase domain, using the LOV domains to control the catalytic activity of the kinase. While much is known about the structure and photochemistry of the light-perceiving LOV domains, particularly in how activation of the LOV2 domain triggers the unfolding of alpha helices that communicate the light signal to the kinase domain, many questions about phot structure and mechanism remain. Recent studies have made progress addressing these questions by utilizing small-angle X-ray scattering (SAXS) and other biophysical approaches to study multidomain phots from Chlamydomonas and Arabidopsis , leading to models where the domains have an extended linear arrangement, with the regulatory LOV2 domain contacting the kinase domain N-lobe. We discuss this and other advances that have improved structural and mechanistic understanding of phot regulation in this review, along with the challenges that will have to be overcome to obtain high-resolution structural information on these exciting photoreceptors. Such information will be essential to advancing fundamental understanding of plant physiology while enabling engineering efforts at both the whole plant and molecular levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.