Eosinophilic meningitis caused by the parasitic nematode Angiostrongylus cantonensis is an emerging infectious disease with recent outbreaks primarily in tropical and subtropical locations around the world, including Hawaii. Humans contract the disease primarily through ingestion of infected gastropods, the intermediate hosts of Angiostrongylus cantonensis. Effective prevention of the disease and control of the spread of the parasite require a thorough understanding of the parasite's hosts, including their distributions, as well as the human and environmental factors that contribute to transmission. The aim of this study was to screen a large cross section of gastropod species throughout the main Hawaiian Islands to determine which act as hosts of Angiostrongylus cantonensis and to assess the parasite loads in these species. Molecular screening of 7 native and 30 non-native gastropod species revealed the presence of the parasite in 16 species (2 native, 14 non-native). Four of the species tested are newly recorded hosts, two species introduced to Hawaii (Oxychilus alliarius, Cyclotropis sp.) and two native species (Philonesia sp., Tornatellides sp.). Those species testing positive were from a wide diversity of heterobranch taxa as well as two distantly related caenogastropod taxa. Review of the global literature showed that many gastropod species from 34 additional families can also act as hosts. There was a wide range of parasite loads among and within species, with an estimated maximum of 2.8 million larvae in one individual of Laevicaulis alte. This knowledge of the intermediate host range of Angiostrongylus cantonensis and the range of parasite loads will permit more focused efforts to detect, monitor and control the most important hosts, thereby improving disease prevention in Hawaii as well as globally.
Since 1955 snails of the Euglandina rosea species complex and Platydemus manokwari flatworms were widely introduced in attempted biological control of giant African snails (Lissachatina fulica) but have been implicated in the mass extinction of Pacific island snails. We review the histories of the 60 introductions and their impacts on L. fulica and native snails. Since 1993 there have been unofficial releases of Euglandina within island groups. Only three official P. manokwari releases took place, but new populations are being recorded at an increasing rate, probably because of accidental introduction. Claims that these predators controlled L. fulica cannot be substantiated; in some cases pest snail declines coincided with predator arrival but concomitant declines occurred elsewhere in the absence of the predator and the declines in some cases were only temporary. In the Hawaiian Islands, although there had been some earlier declines of native snails, the Euglandina impacts on native snails are clear with rapid decline of many endemic Hawaiian Achatinellinae following predator arrival. In the Society Islands, Partulidae tree snail populations remained stable until Euglandina introduction, when declines were extremely rapid with an exact correspondence between predator arrival and tree snail decline. Platydemus manokwari invasion coincides with native snail declines on some islands, notably the Ogasawara Islands of Japan, and its invasion of Florida has led to mass mortality of Liguus spp. tree snails. We conclude that Euglandina and P. manokwari are not effective biocontrol agents, but do have major negative effects on native snail faunas. These predatory snails and flatworms are generalist predators and as such are not suitable for biological control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.