Graphene nanoplates (GNPs) can be used as a platform for homogeneous distribution of adsorbent nanoparticles to improve electron exchange and ion transport for heavy-metal adsorption. In this study, we report a facile thermal decomposition route to fabricate a graphene-supported Fe–Mg oxide composite. The prepared composite was characterized using scanning electron microscopy, transmission electron microscopy, energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. Batch experiments were carried out to evaluate the arsenic adsorption behavior of the GNP/Fe–Mg oxide composite. Both the Langmuir and Freundlich models were employed to describe the adsorption isotherm, in which the sorption kinetics of the arsenic adsorption process by the composite was found to be pseudo-second-order. Furthermore, the reusability and regeneration of the adsorbent were investigated by an assembled-column filter test. The GNP/Fe–Mg oxide composite exhibited significant fast adsorption of arsenic over a wide range of solution pHs, with exceptional durability and recyclability, which could make this composite a very promising candidate for effective removal of arsenic from aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.