Although four Shigella species ( S. flexneri, S . sonnei , S. dysenteriae , and S. boydii ) have been reported, S . sp. PAMC 28760, an Antarctica isolate, is the only one with a complete genome deposited in NCBI database as an uncharacterized isolate. Because it is the world’s driest, windiest, and coldest continent, Antarctica provides an unfavourable environment for microorganisms. Computational analysis of genomic sequences of four Shigella species and our uncategorized Antarctica isolates Shigella sp. PAMC28760 was performed using MP3 (offline version) program to predict trehalase encoding genes as a pathogenic or non-pathogenic form. Additionally, we employed RAST and Prokka (offline version) annotation programs to determine locations of periplasmic ( treA ) and cytoplasmic ( treF ) trehalase genes in studied genomes. Our results showed that only 56 out of 134 Shigella strains had two different trehalase genes ( treF and treA ). It was revealed that the treF gene tends to be prevalent in Shigella species. In addition, both treA and treF genes were present in our strain S . sp. PAMC28760. The main objective of this study was to predict the prevalence of two different trehalase genes ( treF and treA ) in the complete genome of Shigella sp. PAMC28760 and other complete genomes of Shigella species. Till date, it is the first study to show that two types of trehalase genes are involved in Shigella species, which could offer insight on how the bacteria use accessible carbohydrate like glucose produced from the trehalose degradation pathway, and importance of periplasmic trehalase involvement in bacterial virulence.
The genus Arthrobacter is a known group of Gram-positive, opportunistic pathogenic bacteria from cold climates, with members that are believed to play a variety of roles at low temperatures. However, their survival mechanisms in frigid environments like the Antarctic are still unknown. We identified a species of Arthrobacter isolated from seawater in the polar region using 16S rRNA sequence analysis. The strain PAMC25284 genome consists of a circular chromosome with a GC content of 65.6% and is projected to contain 3,588 genes, of which 3,150 are protein coding, 366 are pseudogenes, 19 are rRNA coding, and 50 are tRNA coding genes. Using comparative genomics, we showed that PMAC25284 has copper-transporting ATPases, copper chaperone, copper-responsive transcriptional regulator, and multi-copper oxidase domains, which are found in both Gram-positive (like Mycobacterium tuberculosis and Enterococcus hirae) and Gram-negative bacteria (like E. coli and Pseudomonas aeruginosa). The existence of 4 multi-copper oxidase genes, which supplied an additional copper defense mechanism, could be intriguing information regarding Gram-positive bacteria such as Arthrobacter sp. PAMC25284. In addition, our strain PAMC25284 has the same MmcO gene as M. tuberculosis, with a locus tag KY499_RS04055 similarity of 40.61%, which is the highest among the Gram-positive and Gram-negative bacteria studied for this gene. Our cold-adapted Arthrobacter sp. strain PAMC25564 was published previously but did not contain a multi-copper oxidase domain-containing gene, but strain PAMC25284 was studied in this study.
The complete genomes of Variovorax strains were analyzed and compared along with the genomes of Variovorax strains PAMC28711, PAMC28562, and PAMC26660, Antarctic isolates. The genomic information was collected from the NCBI database and the CAZyme database, and Prokka annotation was used to find the genes that encode for the trehalose metabolic pathway. Likewise, CAZyme annotation (dbCAN2 Meta server) was performed to predict the CAZyme family responsible for trehalose biosynthesis and degradation enzymes. Trehalose has been found to respond to osmotic stress and extreme temperatures. As a result, the study of the trehalose metabolic pathway was carried out in harsh environments such as the Antarctic, where bacteria Variovorax sp. strains PAMC28711, PAMC28562, and PAMC26660 can survive in extreme environments, such as cold temperatures. The trehalose metabolic pathway was analyzed via bioinformatics tools, such as the dbCAN2 Meta server, Prokka annotation, Multiple Sequence Alignment, ANI calculator, and PATRIC database, which helped to predict trehalose biosynthesis and degradation genes’ involvement in the complete genome of Variovorax strains. Likewise, MEGA X was used for evolutionary and conserved genes. The complete genomes of Variovorax strains PAMC28711, PAMC26660, and PAMC28562 are circular chromosomes of length (4,320,000, 7,390,000, and 4,690,000) bp, respectively, with GC content of (66.00, 66.00, and 63.70)%, respectively. The GC content of these three Variovorax strains is lower than that of the other Variovorax strains with complete genomes. Strains PAMC28711 and PAMC28562 exhibit three complete trehalose biosynthetic pathways (OtsA/OtsB, TS, and TreY/TreZ), but strain PAMC26660 only possesses one (OtsA/OtsB). Despite the fact that all three strains contain trehalose, only strain PAMC28711 has two trehaloses according to CAZyme families (GH37 and GH15). Moreover, among the three Antarctica isolates, only strain PAMC28711 exhibits auxiliary activities (AAs), a CAZyme family. To date, although the Variovorax strains are studied for different purposes, the trehalose metabolic pathways in Variovorax strains have not been reported. Further, this study provides additional information regarding trehalose biosynthesis genes and degradation genes (trehalose) as one of the factors facilitating bacterial survival under extreme environments, and this enzyme has shown potential application in biotechnology fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.