The sustainable biopolymer, poly(lactide) (PLA), has been intensely researched over the past decades because of its excellent biodegradability, renewability, and sustainability. The boundless potential of this sustainable biopolymer could resolve the adverse negative impact caused by the petroleum-based polymers. However, the inherent drawback of PLA such as brittleness, low heat distortion temperature, and slow recrystallization rate narrowed the broad applications in biomedical, automotive, and structural fields. In this study, we successfully synthesized a PHB-based filler (PHB-di-rub) displaying synergetic functions of (1) effective nucleation and (2) extreme toughening of the PLA matrix at only 5% (1.5 wt % PHB content). Remarkably, the storage modulus improves by 15%; tensile elongation extends by 57-fold (300% strain) and toughness by 38-fold while maintaining its original strength and stiffness. Likewise, 10% of PHB-di-rub (3 wt % PHB content) has an even higher improvement with a storage modulus improvement by 32%, elongation by 128-fold (680% strain), and toughness by 84-fold, with a marginal change in strength and stiffness. NMR results confirmed the structure of PHB-di-rub, where PHB acts as the rigid core and the poly(lactide-cocaprolactone) (DLA-co-CL) random copolymer confers the flexibility. DSC, WAXD, and POM display the excellent nucleating ability of PHB-di-rub. SEM shows the morphology of elongated fibrils structure with strong matrix−filler interaction and homogeneous filler dispersion. SAXS, WAXS, and WAXD elucidate the extreme toughening mechanism to be a combination of rubber-induced crazing effect and highly orientated PLA matrix with PHB-di-rub. The Herman's orientation function further quantifies the extreme elongation (680%) owing to the perfect alignment. This highly biodegradable biocomposite with high strength and toughness shows potential in replacing the current petroleum-based polymers, which open up to broader prospects in the biomedical, automotive, and structural application.
The future of green electronics possessing great strength and toughness proves to be a promising area of research in this technologically advanced society. This work develops the first fully bendable and malleable toughened polylactic acid (PLA) green composite by incorporating a multifunctional polyhydroxybutyrate rubber copolymer filler that acts as an effective nucleating agent to accelerate PLA crystallization and performs as a dynamic plasticizer to generate massive polymer chain movement. The resultant biocomposite exhibits a 24‐fold and 15‐fold increment in both elongation and toughness, respectively, while retaining its elastic modulus at >3 GPa. Mechanism studies show the toughening effect is due to an amalgamation of massive shear yielding, crazing, and nanocavitation in the highly dense PLA matrix. Uniquely distinguished from the typical flexible polymer that stretches and recovers, this biocomposite is the first report of PLA that can be “bend, twist, turn, and fold” at room temperature and exhibit excellent mechanical robustness even after a 180° bend, attributes to the highly interconnected polymer network of innumerable nanocavitation complemented with an extensively unified fibrillar bridge. This unique trait certainly opens up a new horizon to future sustainable green electronics development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.