Shuffled Frog Leaping Algorithm (SFLA) is one of the most widespread algorithms. It was developed by Eusuff and Lansey in 2006. SFLA is a population-based metaheuristic algorithm that combines the benefits of memetics with particle swarm optimization. It has been used in various areas, especially in engineering problems due to its implementation easiness and limited variables. Many improvements have been made to the algorithm to alleviate its drawbacks, whether they were achieved through modifications or hybridizations with other well-known algorithms. This paper reviews the most relevant works on this algorithm. An overview of the SFLA is first conducted, followed by the algorithm's most recent modifications and hybridizations. Next, recent applications of the algorithm are discussed. Then, an operational framework of SLFA and its variants is proposed to analyze their uses on different cohorts of applications. Finally, future improvements to the algorithm are suggested. The main incentive to conduct this survey to provide useful information about the SFLA to researchers interested in working on the algorithm's enhancement or application.
This correction is published as Fig. 2 was incorrectly reproduced and has been now updated.Original article has been now corrected.Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.