Any hydraulic reaction turbine is installed with a draft tube that impacts widely the entire turbine performance, on which its functions are as follows: drive the flux in appropriate manner after it releases its energy to the runner; recover the suction head by a suction effect; and improve the dynamic energy in the runner outlet. All these functions are strongly linked to the geometric definition of the draft tube. This article proposes a geometric parametrization and analysis of a Francis turbine draft tube. Based on the parametric definition, geometric changes in the draft tube are proposed and the turbine performance is modeled by computational fluid dynamics; the boundary conditions are set by measurements performed in a hydroelectric power plant. This modeling allows us to see the influence of the draft tube shape on the entire turbine performance. The numerical analysis is based on the steady-state solution of the turbine component flows for different guide vanes opening and multiple modified draft tubes. The computational fluid dynamics predictions are validated using hydroelectric plant measurements. The prediction of the turbine performance is successful and it is linked to the draft tube geometric features; therefore, it is possible to obtain a draft tube parameter value that results in a desired turbine performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.