Transgenic Nicotiana plumbaginifolia plants that express either a 5-fold increase or a 20-fold decrease in nitrate reductase (NR) activity were used to study the relationships between carbon and nitrogen metabolism in leaves. Under saturating irradiance the maximum rate of photosynthesis, per unit surface area, was decreased in the low NR expressors but was relatively unchanged in the high NR expressors compared with the wild-type controls.However, when photosynthesis was expressed on a chlorophyll (Chl) basis the low NR plants had comparable or even higher values than the wild-type plants. Surprisingly, the high NR expressors showed very similar rates of photosynthesis and respiration to the wild-type plants and contained identical amounts of leaf Chl, carbohydrate, and protein. These plants were provided with a saturating supply of nitrate plus a basal level of ammonium during all phases of growth. Under these conditions overexpression of NR had little impact on leaf metabolism and did not stimulate growth or biomass production. Large differences in photochemical quenching and nonphotochemical quenching components of Chl a fluorescence, as well as the ratio of variable to maximum fluorescence, (F,/FM), were apparent in the low NR expressors in comparison with the wild-type controls. Light intensity-dependent increases in nonphotochemical quenching and decreases in F,/FM were greatest in the low NR expressors, whereas photochemical quenching decreased uniformly with increasing irradiance in all plant types. Nonphotochemical quenching was increased at all except the lowest irradiances in the low NR expressors, allowing photosystem II to remain oxidized on its acceptor side. l h e relative contributions of photochemical and nonphotochemical quenching of Chl a fluorescence with changing irradiance were virtually identical in the high NR expressors and the wild-type controls. Zeaxanthin was present in all leaves at high irradiances; however, at high irradiance leaves from the low NR expressors contained considerably more zeaxanthin and less violaxanthin than wild-type controls or high NR expressors. l h e leaves of the low NR expressors contained less Chl, protein, and amino acids than controls but retained more carbohydrate (starch and sucrose) than the wild type or high NR expressors. Sucrose phosphate synthase activities were remarkably similar in all plant types regardless of the NR activity. In contrast phosphoenolpyruvate carboxylase activities were increased on a Chl or protein basis in the low NR expressors compared with the wild-type controls or high NR expressors. We conclude that large decreases in NR have profound repercussions for photosynthesis * Corresponding author; fax 33-1-30-83-30-96.
171and carbon partitioning within the leaf but that increases in NR have negligible effects.The hypothesis that the pathways of carbon and N assimilation in leaves compete for energy and carbon skeletons in higher plants is widely accepted, but very little evidence is available to support this view (Robinson, 1988)....
Seaweed extract (Goemar GA 14), applied as a foliar spray increased the total fresh matter production of maize seedlings by 15 to 25% over the control. This was reflected in the increase of root and stem mass per plant. However, only minor differences were measured in stomatal resistance just after treatment and in net carbon assimilation rate two weeks after spraying. No other significant differences were observed in gaz exchanges characteristics. The physiological mechanisms responsible for the beneficial effects of seaweed concentrates on plants and the nature and mode of action of the compounds contained in these concentrates have not yet been elucidated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.