Process mining techniques are able to extract knowledge from event logs commonly available in today’s information systems. These techniques provide new means to discover, monitor, and improve processes in a variety of application domains. There are two main drivers for the growing interest in process mining. On the one hand, more and more events are being recorded, thus, providing detailed information about the history of processes. On the other hand, there is a need to improve and support business processes in competitive and rapidly changing environments. This manifesto is created by the IEEE Task Force on Process Mining and aims to promote the topic of process mining. Moreover, by defining a set of guiding principles and listing important challenges, this manifesto hopes to serve as a guide for software developers, scientists, consultants, business managers, and end-users. The goal is to increase the maturity of process mining as a new tool to improve the (re)design, control, and support of operational business processes
Abstract. Process discovery algorithms typically aim at discovering process models from event logs that best describe the recorded behavior. Often, the quality of a process discovery algorithm is measured by quantifying to what extent the resulting model can reproduce the behavior in the log, i.e. replay fitness. At the same time, there are many other metrics that compare a model with recorded behavior in terms of the precision of the model and the extent to which the model generalizes the behavior in the log. Furthermore, several metrics exist to measure the complexity of a model irrespective of the log. In this paper, we show that existing process discovery algorithm typically consider at most two out of the four main quality dimensions: replay fitness, precision, generalization and simplicity. Moreover, existing approaches can not steer the discovery process based on user-defined weights for the four quality dimensions. This paper also presents the ETM algorithm which allows the user to seamlessly steer the discovery process based on preferences with respect to the four quality dimensions. We show that all dimensions are important for process discovery. However, it only makes sense to consider precision, generalization and simplicity if the replay fitness is acceptable.
Abstract. Process mining has emerged as a new way to analyze business processes based on event logs. These events logs need to be extracted from operational systems and can subsequently be used to discover or check the conformance of processes. ProM is a widely used tool for process mining. In earlier versions of ProM, MXML was used as an input format. In future releases of ProM, a new logging format will be used: the eXtensible Event Stream (XES) format. This format has several advantages over MXML. The paper presents two tools that use this format -XESame and ProM 6 -and highlights the main innovations and the role of XES. XESame enables domain experts to specify how the event log should be extracted from existing systems and converted to XES. ProM 6 is a completely new process mining framework based on XES and enabling innovative process mining functionality.
Process discovery algorithms typically aim at discovering process models from event logs that best describe the recorded behavior. Often, the quality of a process discovery algorithm is measured by quantifying to what extent the resulting model can reproduce the behavior in the log, i.e. replay fitness. At the same time, there are other measures that compare a model with recorded behavior in terms of the precision of the model and the extent to which the model generalizes the behavior in the log. Furthermore, many measures exist to express the complexity of a model irrespective of the log.In this paper, we first discuss several quality dimensions related to process discovery. We further show that existing process discovery algorithms typically consider at most two out of the four main quality dimensions: replay fitness, precision, generalization and simplicity. Moreover, existing approaches cannot steer the discovery process based on user-defined weights for the four quality dimensions. This paper presents the ETM algorithm which allows the user to seamlessly steer the discovery process based on preferences with respect to the four quality dimensions. We show that all dimensions are important for process discovery. However, it only makes sense to consider precision, generalization and simplicity if the replay fitness is acceptable.
Existing process discovery approaches have problems dealing with competing quality dimensions (fitness, simplicity, generalization, and precision) and may produce anomalous process models (e.g., deadlocking models). In this paper we propose a new genetic process mining algorithm that discovers process models from event logs. The tree representation ensures the soundness of the model. Moreover, as experiments show, it is possible to balance the different quality dimensions. Our genetic process mining algorithm is the first algorithm where the search process can be guided by preferences of the user while ensuring correctness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.