We report the case of a 38 y old man with antiphospholipid syndrome and exceptionally extensive central vein thrombosis in the right internal jugular vein, superior vena cava, and both subclavian veins. In spite of intensive anticoagulation therapy there was only a partial response. We suggest the MR angiography be the reference standard for diagnosis in this type of patient.
BACKGROUND Obstructive sleep apnea (OSA) is a common sleep disorder characterized by frequent cessation of breathing lasting 10 seconds or longer. The diagnosis of OSA is performed through an expensive procedure, which requires an overnight stay at the hospital. This has led to several proposals based on the analysis of patients’ facial images and speech recordings as an attempt to develop simpler and cheaper methods to diagnose OSA. OBJECTIVE The objective of this study was to analyze possible relationships between OSA and speech and facial features on a female population and whether these possible connections may be affected by the specific clinical characteristics in OSA population and, more specifically, to explore how the connection between OSA and speech and facial features can be affected by gender. METHODS All the subjects are Spanish subjects suspected to suffer from OSA and referred to a sleep disorders unit. Voice recordings and photographs were collected in a supervised but not highly controlled way, trying to test a scenario close to a realistic clinical practice scenario where OSA is assessed using an app running on a mobile device. Furthermore, clinical variables such as weight, height, age, and cervical perimeter, which are usually reported as predictors of OSA, were also gathered. Acoustic analysis is centered in sustained vowels. Facial analysis consists of a set of local craniofacial features related to OSA, which were extracted from images after detecting facial landmarks by using the active appearance models. To study the probable OSA connection with speech and craniofacial features, correlations among apnea-hypopnea index (AHI), clinical variables, and acoustic and facial measurements were analyzed. RESULTS The results obtained for female population indicate mainly weak correlations (r values between .20 and .39). Correlations between AHI, clinical variables, and speech features show the prevalence of formant frequencies over bandwidths, with F2/i/ being the most appropriate formant frequency for OSA prediction in women. Results obtained for male population indicate mainly very weak correlations (r values between .01 and .19). In this case, bandwidths prevail over formant frequencies. Correlations between AHI, clinical variables, and craniofacial measurements are very weak. CONCLUSIONS In accordance with previous studies, some clinical variables are found to be good predictors of OSA. Besides, strong correlations are found between AHI and some clinical variables with speech and facial features. Regarding speech feature, the results show the prevalence of formant frequency F2/i/ over the rest of features for the female population as OSA predictive feature. Although the correlation reported is weak, this study aims to find some traces that could explain the possible connection between OSA and speech in women. In the case of craniofacial measurements, results evidence that some features that can be used for predicting OSA in male patients are not suitable for testing female population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.