Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, binds Toll-like receptor 4 (TLR4)-MD2 complex and activates innate immune responses. LPS transfer to TLR4-MD2 is catalyzed by both LPS binding protein (LBP) and CD14. To define the sequential molecular interactions underlying this transfer, we reconstituted in vitro the entire LPS transfer process from LPS micelles to TLR4-MD2. Using electron microscopy and single-molecule approaches, we characterized the dynamic intermediate complexes for LPS transfer: LBP-LPS micelles, CD14-LBP-LPS micelle, and CD14-LPS-TLR4-MD2 complex. A single LBP molecule bound longitudinally to LPS micelles catalyzed multi-rounds of LPS transfer to CD14s that rapidly dissociated from LPB-LPS complex upon LPS transfer via electrostatic interactions. Subsequently, the single LPS molecule bound to CD14 was transferred to TLR4-MD2 in a TLR4-dependent manner. The definition of the structural determinants of the LPS transfer cascade to TLR4 may enable the development of targeted therapeutics for intervention in LPS-induced sepsis.
Structural maintenance of chromosome (SMC) protein complexes are able to extrude DNA loops. While loop extrusion constitutes a fundamental building block of chromosomes, other factors may be equally important. Here, we show that yeast cohesin exhibits pronounced clustering on DNA, with all the hallmarks of biomolecular condensation. DNA-cohesin clusters exhibit liquid-like behavior, showing fusion of clusters, rapid fluorescence recovery after photobleaching and exchange of cohesin with the environment. Strikingly, the in vitro clustering is DNA length dependent, as cohesin forms clusters only on DNA exceeding 3 kilo–base pairs. We discuss how bridging-induced phase separation, a previously unobserved type of biological condensation, can explain the DNA-cohesin clustering through DNA-cohesin-DNA bridges. We confirm that, in yeast cells in vivo, a fraction of cohesin associates with chromatin in a manner consistent with bridging-induced phase separation. Biomolecular condensation by SMC proteins constitutes a new basic principle by which SMC complexes direct genome organization.
During intracellular membrane trafficking, N-ethylmaleimide-sensitive factor (NSF) and alpha-soluble NSF attachment protein (α-SNAP) disassemble the soluble NSF attachment protein receptor (SNARE) complex for recycling of the SNARE proteins. The molecular mechanism by which NSF disassembles the SNARE complex is largely unknown. Using single-molecule fluorescence spectroscopy and magnetic tweezers, we found that NSF disassembled a single SNARE complex in only one round of adenosine triphosphate (ATP) turnover. Upon ATP cleavage, the NSF hexamer developed internal tension with dissociation of phosphate ions. After latent time measuring tens of seconds, NSF released the built-up tension in a burst within 20 milliseconds, resulting in disassembly followed by immediate release of the SNARE proteins. Thus, NSF appears to use a “spring-loaded” mechanism to couple ATP hydrolysis and unfolding of substrate proteins.
Vesicles in neurons and neuroendocrine cells store neurotransmitters and peptide hormones, which are released by vesicle fusion in response to Ca -evoking stimuli. Synaptotagmin-1 (Syt1), a Ca sensor, mediates ultrafast exocytosis in neurons and neuroendocrine cells. After vesicle docking, Syt1 has two main groups of binding partners: anionic phospholipids and the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) complex. The molecular mechanisms by which Syt1 triggers vesicle fusion remain controversial. This Review introduces and summarizes six molecular models of Syt1: (a) Syt1 triggers SNARE unclamping by displacing complexin, (b) Syt1 clamps SNARE zippering, (c) Syt1 causes membrane curvature, (d) membrane bridging by Syt1, (e) Syt1 is a vesicle-plasma membrane distance regulator, and (f) Syt1 undergoes circular oligomerization. We discuss important conditions to test Syt1 activity in vitro and attempt to illustrate the possible roles of Syt1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.