The ubiquitin-like protein Nedd8/Rub1 covalently modifies and activates cullin ubiquitin ligases. However, the repertoire of Nedd8-modified proteins and the regulation of protein neddylation status are not clear. The cysteine protease DEN1/NEDP1 specifically processes the Nedd8 precursor and has been suggested to deconjugate Nedd8 from cullin proteins. By characterizing the Drosophila DEN1 protein and DEN1 null (DEN1null) mutants, we provide in vitro and in vivo evidence that DEN1, in addition to processing Nedd8, deneddylates many cellular proteins. Although purified DEN1 protein efficiently deneddylates the Nedd8-conjugated cullin proteins Cul1 and Cul3, neddylated Cul1 and Cul3 protein levels are not enhanced in DEN1null. Strikingly, many cellular proteins are highly neddylated in DEN1 mutants and are deneddylated by purified DEN1 protein. DEN1 deneddylation activity is distinct from that of the cullin-deneddylating CSN. Genetic analyses indicate that a balance between neddylation and deneddylation maintained by DEN1 is crucial for animal viability.
Aim: This study investigates the inactivation of Cryptosporidium parvum using the OH radical and reports the OH radical CT (OH radical concentration × contact time) values for C. parvum inactivation. Methods and Results: Although a wealth of information has demonstrated the efficacy of the microbial inactivation activity of the OH radical, no studies have performed a quantitative estimation of the OH radical for C. parvum inactivation. The CT value of the OH radical required for 2 log C. parvum inactivation was measured with two OH radical‐generating systems, photo/ferrioxalate and photo/TiO2. The OH radical was approx. 104–107‐fold more effective for microbial inactivation than other popular chemical disinfectants such as ozone, chlorine dioxide and free chlorine. Conclusions: The OH radical appears to be suitable for microbial inactivation with a calculated CT value required for 2 log C. parvum inactivation of 9·3 × 10−5 mg min l−1. Significance and Impact of the Study: This study is the first report of an investigation on the role of the OH radical in the photo/ferrioxalate and photo/TiO2 systems and on the OH radical CT required for C. parvum inactivation.
The wing imaginal disc of Drosophila consists of the primordia for the adult wing and the body wall. The zinc-finger transcription factor Teashirt (Tsh) is expressed in the region proximal to the wing primordium and regulates the formation of the wing-body wall boundary. Here, we report that Tollo/Toll-8, a member of Toll family transmembrane proteins, is also expressed proximal to the wing domain. Ectopic expression of Decapentaplegic (Dpp), a morphogen for wing development, represses tollo expression in the proximal domain. Likewise, misexpression of Tollo in the presumptive wing strongly antagonizes the effects of Dpp signaling. The extracellular domain of Tollo containing the Leucine-Rich Repeats (LRR) is required for the inhibition of Dpp signaling in the wing. Furthermore, clones of cells with Tollo overexpression are sorted out from the surrounding wild-type cells, resulting in the formation of epithelial folds around the clone boundaries. Tsh is ectopically induced at the border of Tollo-expressing clones. Despite the strong effects of Tollo overexpression on Dpp signaling and cell sorting, loss-of-function tollo mutants are viable with normal external morphology. Our data suggest that Tollo function might be redundant but is sufficient to antagonize Dpp signaling and induce sorting of Tollo expressing cells from the wing cells to develop proximal cell fate.
TiO2 photocatalyst has been known to exhibit a notable disinfecting activity against a broad spectrum of microorganisms. A lot of commercial TiO2 photocatalyst products have been developed for antimicrobial purposes. However, a standard method has not yet been proposed for use in testing antimicrobial activity. In this study, we developed a TiO2 photocatalytic adhesion test method with film as the standard testing method for the evaluation of antimicrobial activity. This method was devised by modifying the previous antimicrobial products test method, which has been widely used, and considering the characteristics of TiO2 photocatalytic reaction. The apparatus for testing the antimicrobial activity was composed of a Black Light Blue (BLB) lamp as UV-A light source, a Petri dish as the cover material, and a polypropylene film as the adhesion film. The standard TiO2 photocatalyst sample, Degussa P25 TiO2-coated glass, could only be used once. The optimal initial concentration of the microorganism, proper light intensity, and light irradiation time were determined to be 10 6 CFU/mL, 1.0 mW/cm 2 , and 3 hr, respectively, for testing and evaluating antimicrobial activity on the TiO2 surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.