S U M M A R YCaveolin-3, a muscle-specific member of the caveolin family, is strongly localized to the neuromuscular junction (NMJ) in adult rat muscle fibers, where it co-localizes with ␣ -bungarotoxin staining. In 24-month-old rats, less distinct staining corresponds with the normal aging changes in the NMJ. After denervation, the pattern and intensity of staining begin to break up as early as 3 days, and by 10 days little staining remains. The functional implications of this concentration of caveolin-3 at the NMJ remain obscure, but it is possible that its absence could account for some of the phenotypic characteristics of individuals with caveolin-3 mutations.
Elongation factor-1 alpha, (EF-1 alpha), a translation factor involved in peptide chain elongation, is found ubiquitously in all cells. Previously, we identified a highly homologous EF-1 alpha sister gene, S1, whose transcript is found in only three tissues: brain, heart, and muscle, where the tissue-specific expression of S1 is caused by its exclusive presence in cells such as neurons and myocytes. Using sequence-specific synthetic peptides, we have recently produced polyclonal antibodies that can distinguish the protein product of EF-1 alpha from that of its sister, S1. Results of Western blotting show that these two proteins appear in S1-positive muscle tissue in inverse relationship, i.e., when S1 protein is in abundance, EF-1 alpha protein is in contrast in low quantity, and vice versa. During early embryonic stages, EF-1 alpha is the predominant protein species, whereas S1 is hardly detectable. This high EF-1 alpha versus low S1 protein presence undergoes a switch in that by postnatal day 14, EF-1 alpha is scarce whereas S1 is abundant; thus, there is a development-dependent shift of EF-1 alpha/S1 ratio from high to low, and the low EF-1 alpha/S1 ratio is maintained in adulthood. In this report, we describe the reversal of the EF-1 alpha/S1 ratio from low to high during muscle injury (experimentally induced by Marcaine injection), and a return to the original low ratio once the injury is repaired by regeneration. In this injury condition, EF-1 alpha is rapidly upregulated immediately after the Marcaine treatment, possibly reflecting an injury-dependent response of regeneration. The increase of EF-1 alpha corresponds with a decrease of S1 protein presence, thus resulting in a change of EF-1 alpha/S1 ratio from low to high. However, the high EF-1 alpha/S1 ratio eventually reverts to low, when regeneration-associated proliferation ceases, and fully differentiated myotubes are reestablished in the injured cells. This result shows that: (1) a high EF-1 alpha/S1 ratio is an early molecular diagnostic marker for injury-elicited regeneration; and (2) when injury repair is accomplished, there is a reversion to the low EF-1 alpha/S1 ratio, reflecting the restoration of the muscle fiber to the preinjury functional status. Results presented here not only show that a high EF-1 alpha/S1 ratio is a molecular marker for injured muscle, but also reveal the underpinning translational regulation in muscle during injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.