Deep brain stimulation (DBS) is associated with significant improvement of motor complications in patients with severe Parkinson's disease after some 6-12 months of treatment. Long-term results in a large number of patients have been reported only from a single study centre. We report 69 Parkinson's disease patients treated with bilateral DBS of the subthalamic nucleus (STN, n = 49) or globus pallidus internus (GPi, n = 20) included in a multicentre study. Patients were assessed preoperatively and at 1 year and 3-4 years after surgery. The primary outcome measure was the change in the 'off' medication score of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III) at 3-4 years. Stimulation of the STN or GPi induced a significant improvement (50 and 39%; P < 0.0001) of the 'off' medication UPDRS-III score at 3-4 years with respect to baseline. Stimulation improved cardinal features and activities of daily living (ADL) (P < 0.0001 and P < 0.02 for STN and GPi, respectively) and prolonged the 'on' time spent with good mobility without dyskinesias (P < 0.00001). Daily dosage of levodopa was significantly reduced (35%) in the STN-treated group only (P < 0.001). Comparison of the improvement induced by stimulation at 1 year with 3-4 years showed a significant worsening in the 'on' medication motor states of the UPDRS-III, ADL and gait in both STN and GPi groups, and speech and postural stability in the STN-treated group. Adverse events (AEs) included cognitive decline, speech difficulty, instability, gait disorders and depression. These were more common in patients treated with DBS of the STN. No patient abandoned treatment as a result of these side effects. This experience, which represents the first multicentre study assessing the long-term efficacy of either STN or GPi stimulation, shows a significant and substantial clinically important therapeutic benefit for at least 3-4 years in a large cohort of patients with severe Parkinson's disease.
The subthalamic nucleus (STN) has been regarded as an important modulator of basal ganglia output. It receives its major afferents from the cerebral cortex, thalamus, globus pallidus externus and brainstem, and projects mainly to both segments of the globus pallidus, substantia nigra, striatum and brainstem. The STN is essentially composed of projection glutamatergic neurons. Lesions of the STN induce choreiform abnormal movements and ballism on the contralateral side of the body. In animal models of Parkinson's disease this nucleus may be dysfunctional and neurons may fire in oscillatory patterns that can be closely related to tremor. Both STN lesions and high frequency stimulation ameliorate the major motor symptoms of parkinsonism in humans and animal models of Parkinson's disease and reverse certain electrophysiological and metabolic consequences of dopamine depletion. These new findings have led to a renewed interest in the STN. The aim of the present article is to review briefly the major anatomical, pharmacological and physiological aspects of the STN, as well as its involvement in the pathophysiology and treatment of Parkinson's disease.
The aim of this study was to examine possible neuropsychological changes in patients with advanced idiopathic Parkinson's disease treated with bilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN). Eleven patients (age = 67 +/- 8 years, years with Parkinson's disease = 15 +/- 3, verbal IQ = 114 +/- 12) were evaluated (in their best 'on state') with tests assessing processes reliant on the functional integrity of frontal striatal circuitry, prior to the procedure (n = 11), at 3-6 months (n = 11) and at 9-12 months (n =10) post-operatively. Six of these patients were older than 69 years. Despite clinical motor benefits at 3-6 months post-operative, significant declines were noted in working memory, speed of mental processing, bimanual motor speed and co-ordination, set switching, phonemic fluency, long-term consolidation of verbal material and the encoding of visuospatial material. Declines were more consistently observed in patients who were older than 69 years, leading to a mental state comparable with progressive supranuclear palsy. 'Frontal' behavioural dyscontrol without the benefit of insight was also reported by half (three of six) of the caregivers of the elderly subgroup. At 9-12 months postoperative, only learning based on multiple trials had recovered. Tasks reliant on the integrity of frontal striatal circuitry either did not recover or gradually worsened over time. Bilateral STN DBS can have a negative impact on various aspects of frontal executive functioning, especially in patients older than 69 years. Future studies will evaluate a larger group of patients and examine the possible reversibility of these effects by turning the DBS off.
Subthalamic nucleus deep brain stimulation improves motor symptoms and quality of life in advanced Parkinson's disease. As after other life-altering surgeries, suicides have been reported following deep brain stimulation for movement disorders. We sought to determine the suicide rate following subthalamic nucleus deep brain stimulation for Parkinson's disease by conducting an international multicentre retrospective survey of movement disorder and surgical centres. We further sought to determine factors associated with suicide attempts through a nested case-control study. In the survey of suicide rate, 55/75 centres participated. The completed suicide percentage was 0.45% (24/5311) and attempted suicide percentage was 0.90% (48/5311). Observed suicide rates in the first postoperative year (263/100,000/year) (0.26%) were higher than the lowest and the highest expected age-, gender- and country-adjusted World Health Organization suicide rates (Standardized Mortality Ratio for suicide: SMR 12.63-15.64; P < 0.001) and remained elevated at the fourth postoperative year (38/100,000/year) (0.04%) (SMR 1.81-2.31; P < 0.05). The excess number of deaths was 13 for the first postoperative year and one for the fourth postoperative year. In the case-control study of associated factors, 10 centres participated. Twenty-seven attempted suicides and nine completed suicides were compared with 70 controls. Postoperative depression (P < 0.001), being single (P = 0.007) and a previous history of impulse control disorders or compulsive medication use (P = 0.005) were independent associated factors accounting for 51% of the variance for attempted suicide risk. Attempted suicides were also associated (P < 0.05) with being younger, younger Parkinson's disease onset and a previous suicide attempt. Completed suicides were associated with postoperative depression (P < 0.001). Postoperative depression remained a significant factor associated with attempted and completed suicides after correction for multiple comparisons using the stringent Bonferroni correction. Mortality in the first year following subthalamic nucleus deep brain stimulation has been reported at 0.4%. Suicide is thus one of the most important potentially preventable risks for mortality following subthalamic nucleus deep brain stimulation for Parkinson's disease. Postoperative depression should be carefully assessed and treated. A multidisciplinary assessment and follow-up is recommended.
This study investigates the hypothesis that, as a consequence of Parkinson's disease, disturbed caudate outflow will lead to deficits in cognitive functions dependent upon the integrity of the prefrontal cortex, the cortical focus of caudatofugal signals. Since Parkinson's disease also involves lesions in extra-striatal midbrain cells which reduce the extrinsic supply of dopamine to this cortical region, such functions are at double risk. Forty nondemented parkinsonian patients were drawn from a pool of 100 consecutive patients and matched with 40 normal control subjects according to age, education, IQ, and sex. All patients were quantitatively rated on neurological indices of disease. Neuropsychological assessment of the patient and normal groups included tests of general intelligence, psychomotor skills, memory, visuospatial and executive functions. No global cognitive decline was observed in the parkinsonian group. Moreover, memory and visuospatial abilities were generally intact. A small cluster of deficits emerged, interpreted as reflecting impairment in the ability to spontaneously generate efficient strategies when relying on self-directed task-specific planning. In addition, several tests thought to be sensitive to frontal lobe function distinguished patients with symptoms strongly lateralized to the right versus left side of the body. Deficits in strategic planning were later investigated in relation to severity of disease and to patient attributes including IQ and age, both of which were relevant to performance on specific tasks. Results were compared with previous investigations in parkinsonian patients and discussed from the perspective of both animal and human studies involving damage to the cerebral cortex and basal ganglia. As the prefrontal cortex is thought to play a crucial role in self-directed behavioural planning, the validity of an outflow model in predicting the consequences of caudate nucleus dysfunction was supported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.