The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence—archeological and genetic—suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.
BackgroundHead lice, Pediculus humanus capitis, occur in four divergent mitochondrial clades (A, B, C and D), each having particular geographical distributions. Recent studies suggest that head lice, as is the case of body lice, can act as a vector for louse-borne diseases. Therefore, understanding the genetic diversity of lice worldwide is of critical importance to our understanding of the risk of louse-borne diseases.Methodology/Principal FindingsHere, we report the results of the first molecular screening of pygmies’ head lice in the Republic of Congo for seven pathogens and an analysis of lice mitochondrial clades. We developed two duplex clade-specific real-time PCRs and identified three major mitochondrial clades: A, C, and D indicating high diversity among the head lice studied. We identified the presence of a dangerous human pathogen, Borrelia recurrentis, the causative agent of relapsing fever, in ten clade A head lice, which was not reported in the Republic of Congo, and B. theileri in one head louse. The results also show widespread infection among head lice with several species of Acinetobacter. A. junii was the most prevalent, followed by A. ursingii, A. baumannii, A. johnsonii, A. schindleri, A. lwoffii, A. nosocomialis and A. towneri.Conclusions/SignificanceOur study is the first to show the presence of B. recurrentis in African pygmies’ head lice in the Republic of Congo. This study is also the first to report the presence of DNAs of B. theileri and several species of Acinetobacter in human head lice. Further studies are needed to determine whether the head lice can transmit these pathogenic bacteria from person to another.
In human populations, the concomitance of various parasitic infections can induce modifications of the specific immune response to each pathogen and thus induce changes in their clinical expression. Several studies, however, have produced conflicting results. To study the hypothesis that there is an association between helminthiasis and the occurrence of severe malaria a prospective case-control study was carried out in a rural zone of Senegal where 105 presumptive severe malaria attacks were studied in 2001 and 2002. Following parasitological control the cases were divided into two groups: A (severe malaria) with severe symptoms and parasite density >5000 parasites/microl (n = 64) and B (other causes) with severe symptoms and negative or weak parasite density (n = 41). In group A the prevalence of Ascaris lumbricoides infection was higher in cases of severe malaria than in controls, odds ratio (OR) = 9.95 (95% CI 3.03-32.69). Similar but not significantly different results were observed between patients in group B and their controls, OR = 2.47 (95% CI 0.95-6.38).
Recent molecular exploration of the Plasmodium species circulating in great apes in Africa has revealed the existence of a large and previously unknown diversity of Plasmodium. For instance, gorillas were found to be infected by parasites closely related to Plasmodium falciparum, suggesting that the human malignant malaria agent may have arisen after a transfer from gorillas. Although this scenario is likely in light of the data collected in great apes, it remained to be ascertained whether P. falciparum-related parasites may infect other nonhuman primates in Africa. Using molecular tools, we here explore the diversity of Plasmodium species infecting monkeys in Central Africa. In addition to previously described Hepatocystis and Plasmodium species (Plasmodium gonderi and Plasmodium sp DAJ-2004), we have found one African monkey to be infected by a P. falciparum-related parasite. Examination of the nuclear and mitochondrial genomes of this parasite reveals that it is specific of nonhuman primates, indicating that P. falciparum-related pathogens can naturally circulate in some monkey populations in Africa. We also show that at least two distinct genetic entities of P. falciparum infect nonhuman primates and humans, respectively. Our discoveries bring into question the proposed gorilla origin of human P. falciparum.human malaria | laverania clade | parasite host transfer | cytochrome b | biological evolution U ntil very recently, only one species (Plasmodium reichenowi) was known to be a phylogenetic sister lineage of Plasmodium falciparum, the agent of malignant human malaria. These two species were the only known representatives of the subgenus Laverania (1). In 2009 and 2010, several studies have revealed the existence of a number of distinct phylogenetic species belonging to this subgenus and infecting chimpanzees, bonobos, and gorillas in Africa (2-6), drastically modifying our understanding of the evolution of the Laverania lineage, and P. falciparum in particular (7).Liu et al. (4) have proposed that the human strains of P. falciparum arose after a single gorilla-to-human transmission (4, 7). This scenario is based on the discovery of P. falciparum-related strains naturally circulating in lowland gorillas (2, 4, 6) that display greater genetic diversity than human strains (4). In contrast, no P. falciparum strains were found in wild chimpanzees or bonobos despite similar sampling efforts (4). Strains of P. falciparum had been found only in chimpanzees and bonobos living either in captivity or sanctuaries, with the possibility of a crossspecies infection from humans to them (2, 3). It, however, remains possible that P. falciparum-related strains circulate in wild chimpanzees and bonobos at a lower prevalence than in gorillas (8) and/or in geographic areas not yet explored. Given the propensity of Plasmodium parasites to switch hosts (e.g., the transfer of P. knowlesi from macaques to humans (9) and P. vivax and P. malariae between humans and New World monkeys; ref. 10), one cannot exclude that P. falciparum-r...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.