International audience
A subgraph of a vertex-colored graph is said to be tropical whenever it contains each color of the graph. In this work we study the problem of finding a minimal connected tropical subgraph. We first show that this problem is NP-Hard for trees, interval graphs and split graphs, but polynomial when the number of colors is logarithmic in terms of the order of the graph (i.e. FPT). We then provide upper bounds for the order of the minimal connected tropical subgraph under various conditions. We finally study the problem of finding a connected tropical subgraph in a randomly vertex-colored random graph.
Given a vertex-coloured graph, a dominating set is said to be tropical if every colour of the graph appears at least once in the set. Here, we study minimum tropical dominating sets from structural and algorithmic points of view. First, we prove that the tropical dominating set problem is NP-complete even when restricted to a simple path. Then, we establish upper bounds related to various parameters of the graph such as minimum degree and number of edges. We also give an optimal upper bound for random graphs. Last, we give approximability and inapproximability results for general and restricted classes of graphs, and establish a FPT algorithm for interval graphs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.