Endocannabinoids form a novel class of intercellular messengers, the functions of which include retrograde signaling in the brain and mediation or modulation of several types of synaptic plasticity. Yet, the signaling mechanisms and long-term effects of the stimulation of CB1 cannabinoid receptors (CB1-R) are poorly understood. We show that anandamide, 2-arachidonoyl-glycerol, and ⌬9-tetrahydrocannabinol (THC) activated extracellular signal-regulated kinase (ERK) in hippocampal slices. In living mice, THC activated ERK in hippocampal neurons and induced its accumulation in the nuclei of pyramidal cells in CA1 and CA3. Both effects were attributable to stimulation of CB1-R and activation of MAP kinase/ERK kinase (MEK). In hippocampal slices, the stimulation of ERK was independent of phosphatidyl-inositol-3-kinase but was regulated by cAMP. The endocannabinoid-induced stimulation of ERK was lost in Fyn knockout mice, in slices and in vivo, although it was insensitive to inhibitors of Src-family tyrosine kinases in vitro, suggesting a noncatalytic role of Fyn. Finally, the effects of cannabinoids on ERK activation were dependent on the activity of glutamate NMDA receptors in vivo, but not in hippocampal slices, indicating the existence of several pathways linking CB1-R to the ERK cascade. In vivo THC induced the expression of immediate-early genes products (c-Fos protein, Zif268, and BDNF mRNAs), and this induction was prevented by an inhibitor of MEK. The strong potential of cannabinoids for inducing long-term alterations in hippocampal neurons through the activation of the ERK pathway may be important for the physiological control of synaptic plasticity and for the general effects of THC in the context of drug abuse.
Postischemic delayed neuronal death is attributed to excitotoxic activation of glutamate receptors. It is preceded by a persistent inhibition of protein synthesis, the molecular basis of which is not known. Here we have examined in cortical neurons in culture the regulation by glutamate of phosphorylation of eukaryotic elongation factor-2 (eEF-2) by eEF-2 kinase, a Ca 2ϩ / calmodulin-dependent enzyme. Using a phosphorylation statespecific antibody, we show that glutamate, which triggers a large influx of Ca 2ϩ , enhances dramatically the phosphorylation of eEF-2. On the basis of kinetic and pharmacological analysis, we demonstrate a close correlation among the increase in cytosolic Ca 2ϩ concentration, the degree of eEF-2 phosphorylation, and the inhibition of protein synthesis. A 30 min treatment with NMDA induced a transient phosphorylation of eEF-2 and delayed neuronal death. However, pharmacological inhibition of protein translation was not neurotoxic by itself and protected neurons against the toxicity evoked by low concentrations of NMDA. Thus, phosphorylation of eEF-2 and the resulting depression of protein translation may have protective effects against excitotoxicity and open new perspectives for understanding long-term effects of glutamate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.