Postischemic delayed neuronal death is attributed to excitotoxic activation of glutamate receptors. It is preceded by a persistent inhibition of protein synthesis, the molecular basis of which is not known. Here we have examined in cortical neurons in culture the regulation by glutamate of phosphorylation of eukaryotic elongation factor-2 (eEF-2) by eEF-2 kinase, a Ca 2ϩ / calmodulin-dependent enzyme. Using a phosphorylation statespecific antibody, we show that glutamate, which triggers a large influx of Ca 2ϩ , enhances dramatically the phosphorylation of eEF-2. On the basis of kinetic and pharmacological analysis, we demonstrate a close correlation among the increase in cytosolic Ca 2ϩ concentration, the degree of eEF-2 phosphorylation, and the inhibition of protein synthesis. A 30 min treatment with NMDA induced a transient phosphorylation of eEF-2 and delayed neuronal death. However, pharmacological inhibition of protein translation was not neurotoxic by itself and protected neurons against the toxicity evoked by low concentrations of NMDA. Thus, phosphorylation of eEF-2 and the resulting depression of protein translation may have protective effects against excitotoxicity and open new perspectives for understanding long-term effects of glutamate.
Stimulation of beta-adrenoceptors in cardiac ventricular myocytes activates a strong chloride ion conductance as a result of phosphorylation by cyclic AMP-dependent protein kinase (PKA). This Cl- conductance, which is time- and voltage-independent, counters the tendency of the simultaneously enhanced Ca2+ channel current to prolong the ventricular action potential. Using inside-out giant patches excised from guinea-pig myocytes, we show here that phosphorylation by the PKA catalytic subunit plus Mg-ATP elicits discrete Cl- channel currents. In almost symmetrical Cl- solutions (approximately 150 mM), unitary current amplitude scales with membrane potential, and reverses sign near 0 mV, to yield a single channel conductance of approximately 12 pS. Opening of the phosphorylated channels requires hydrolysable nucleoside triphosphate, indicating that phosphorylation by PKA is necessary, but not sufficient, for channel activation. The properties of these PKA-regulated cardiac Cl- channels are very similar, if not identical, to those of the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial cell Cl- channel whose regulation is defective in patients with cystic fibrosis. The full cardiological impact of these Cl- channels and of their possible malfunction in patients with cystic fibrosis remains to be determined.
Tissue infiltration and elevated peripheral circulation of granulocytic myeloid-derived cells is associated with poor outcomes in prostate cancer (PCa) and other malignancies. Although myeloid-derived cells have the ability to suppress T-cell function, little is known about the direct impact of these innate cells on prostate tumor growth. Here it is reported that granulocytic myeloid-derived suppressor cells (MDSCs) are the predominant tumor infiltrating cells in PCa xenografts established in athymic nude mice. MDSCs significantly increased in number in the peripheral circulation as a function of xenograft growth and were successfully depleted in vivo by Gr-1 antibody treatment. Importantly, MDSC depletion significantly decreased xenograft growth. We hypothesized that granulocytic MDSCs might exert their pro-tumorigenic actions in part through neutrophil elastase (ELA2/NE), a serine protease released upon granulocyte activation. Indeed, it was determined that NE is expressed by infiltrating immune cells and is enzymatically active in PCa xenografts and in prostate tumors of prostate-specific Pten-null mice. Importantly, treatment with sivelestat, a small-molecule inhibitor specific for NE, significantly decreased xenograft growth, recapitulating the phenotype of Gr-1 MDSC depletion. Mechanistically, NE activated mitogen-activated protein kinase (MAPK) signaling and induced MAPK-dependent transcription of the proliferative gene cFOS in PCa cells. Functionally, NE stimulated proliferation, migration, and invasion of PCa cells in vitro. Immunohistochemistry (IHC) on human PCa clinical biopsies revealed co-expression of NE and infiltrating CD33+ MDSCs.
Understanding the mechanism of lymph node metastasis, a poor prognostic sign for prostate cancer, and the further dissemination of the disease is important to develop novel treatment strategies. Recent studies have reported that C‐C chemokine receptor 7 (CCR7), whose ligand is CCL21, is abundantly expressed in lymph node metastasis and promotes cancer progression. Tumor necrosis factor‐α (TNF‐α) is chronically produced at low levels within the tumor microenvironment. The aim of this study was to determine whether TNF‐α promotes prostate cancer dissemination from metastatic lymph nodes through activation of the CCL21/CCR7 axis. First, human prostate cancer cells were determined to express both TNF‐α and CCR7. Second, low concentrations of TNF‐α were confirmed to induce CCR7 in prostate cancer cells through phosphorylation of ERK. Finally, CCL21 was found to promote the migration of prostate cancer cells through phosphorylation of the protein kinase p38. Our results suggest that TNF‐α leads to the induction of CCR7 expression and that the CCL21/CCR7 axis might increase the metastatic potential of prostate cancer cells in lymph node metastasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.