International audienceWe solve the problem of stabilizing a general class of linear first-order hyperbolic systems. Considered systems feature an arbitrary number of coupled transport PDEs convecting in either direction. Using the backstepping approach, we derive a full-state feedback law and a boundary observer enabling stabilization by output feedback. Unlike previous results, finite-time convergence to zero is achieved in the theoretical lower bound for control time
Norway and DrillWell -Drilling and well centre for improved recovery Stavanger, NorwayWe detail in this article the necessity of a change of paradigm for the delay-robust control of systems composed of two linear first order hyperbolic equations. One must go back to the classical trade-off between convergence rate and delay-robustness. More precisely, we prove that, for systems with strong reflections, canceling the reflection at the actuated boundary will yield zero delayrobustness. Indeed, for such systems, using a backstepping-controller, the corresponding target system should preserve a small amount of this reflection to ensure robustness to a small delay in the loop. This implies, in some cases, giving up finite time convergence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.