The aims of the current study were to evaluate the best technique for total phenolic extraction from Lavandula pubescens (Lp) and its application in vegetable oil industries as alternatives of synthetic food additives (TBHQ and BHT). To achieve these aims, three techniques of extraction were used: ultrasonic-microwave (40 kHz, 50 W, microwave power 480 W, 5 min), ultrasonic-homogenizer (20 kHz, 150 W, 5 min) and conventional maceration as a control. By using the Folin-Ciocalteu method, the total phenolic contents (TPC) (mg gallic acid equivalent/g dry matter) were found to be 253.87, 216.96 and 203.41 for ultrasonic-microwave extract, ultrasonic-homogenizer extract and maceration extract, respectively. The ultrasonic-microwave extract achieved the higher scavenger effect of DPPH (90.53%) with EC50 (19.54 μg/mL), and higher inhibition of β-carotene/linoleate emulsion deterioration (94.44%) with IC50 (30.62 μg/mL). The activity of the ultrasonic-microwave treatment could prolong the induction period (18.82 h) and oxidative stability index (1.67) of fresh refined, bleached and deodorized palm olein oil (RBDPOo) according to Rancimat assay. There was an important synergist effect between citric acid and Lp extracts in improving the oxidative stability of fresh RBDPOo. The results of this work also showed that the ultrasonic-microwave assisted extract was the most effective against Gram-positive and Gram-negative strains that were assessed in this study. The uses of ultrasonic-microwave could induce the acoustic cavitation and rupture of plant cells, and this facilitates the flow of solvent into the plant cells and enhances the desorption from the matrix of solid samples, and thus would enhance the efficiency of extraction based on cavitation phenomenon.
Effect of transglutaminase (TGM) and ascorbic acid (AA) on composite sweet potato - wheat dough functional and rheological properties was studied. Partial substitution of wheat flour with sweet potato flour at the level of 20 % significantly (P ≤ 0.05) reduced glutenin, gliadin, dough stability, protein weakening, storage modulus (G') and viscous modulus (G″). Mixolab revealed that both TGM and AA treated dough had stability and protein weakening closed to wheat dough (control), with TGM treated dough having the highest values. TGM Introduced new cross-link bonds as shown by the change of amino acid concentration, leading to an increase in storage modulus (G') and viscous modulus (G″), with G' being higher at all levels of TGM concentration. The opposite was observed for composite dough treated with AA as measured by controlled - stress rheometer. TGM treatment increased glutenin and gliadin content. Compared with the control, dough treated with AA exhibited high molecular weight of polymers than TGM treated dough. The results indicate that the TGM and AA modification of the mixolab and dynamic rheological characteristics (G' and G″) dependent on the changes of GMP, glutenin, gliadin and protein weakening in the composite dough. TGM and AA treatment could improve functional and rheological properties of sweet potato - wheat dough to levels that might be achieved with normal wheat bread. However, it's extremely important to optimize the concentrations of both additives to obtain the optimum response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.