Multiple sclerosis (MS) is a complex multifactorial disease of the central nervous system (CNS) for which animal models have mainly addressed downstream immunopathology but not potential inducers of autoimmunity. In the absence of a pathogen known to cause neuroinflammation in MS, Mycobacterial lysate is commonly used in the form of complete Freund's adjuvant to induce autoimmunity to myelin proteins in Experimental Allergic Encephalomyelitis (EAE), an animal model for MS. The present study demonstrates that a protein from the human endogenous retrovirus HERV-W family (MSRV-Env) can be used instead of mycobacterial lysate to induce autoimmunity and EAE in mice injected with MOG, with typical anti-myelin response and CNS lesions normally seen in this model. MSRV-Env was shown to induce proinflammatory response in human macrophage cells through TLR4 activation pathway. The present results demonstrate a similar activation of murine dendritic cells and show the ability of MSRV-Env to trigger EAE in mice. In previous studies, MSRV-Env protein was reproducibly detected in MS brain lesions within microglia and perivascular macrophages. The present results are therefore likely to provide a model for MS, in which the upstream adjuvant triggering neuroinflammation is the one detected in MS active lesions. This model now allows pre-clinical studies with therapeutic agents targeting this endogenous retroviral protein in MS.
Rat with excitotoxic neonatal ventral hippocampal lesions (NVHL rats) is considered as a heuristic neurodevelopmental model for studying schizophrenia. Extensive study of this model is limited by the lack of clear validity criteria of such lesions and because ascertaining of the lesions is realized postmortem with histological examination after completing experiments. Here, in a first experiment, by assessing the locomotor response to amphetamine in adult NVHL rats, we further specify that the lesions must be bilateral and confined to the ventral hippocampus to obtain the validated behavioral phenotype. We then show a longitudinal magnetic resonance imaging (MRI) protocol suitable for the detection of brain structural changes in NVHL rats. The T(2)-weighted images acquired in adult NVHL rats reveal the same structural changes as those appraised with histological protocol. Moreover, we demonstrate that the lesion status in adulthood can be accurately predicted from the T(2)-weighted images acquired in the juvenile period. As technical advantages, our MRI protocol makes possible to select animals according to lesion criteria as soon as in the juvenile period before long-lasting experiments and gives access in vivo to a quantitative parameter indicative of the lesion extent. Finally, we show that the lesion size increases only slightly between juvenile and adult periods. These latter results are discussed in the context of the specific postpubertal emergence of the behavioral deficits in NVHL rats.
Overt schizophrenia is preceded by a prodromal phase during which juvenile patients display attenuated schizophrenia-related symptoms. Here, we have looked for evidence of a prodromal phase in juvenile STOP null mice, which, during adulthood, imitate features of schizophrenia. We have principally examined locomotor activity, which is abnormal in adult STOP null mice, and its apparent relationship with perturbed glutamatergic and dopaminergic transmission. When compared to corresponding wild-type mice, juvenile STOP null mice did not exhibit the basal hyperlocomotion or locomotor hypersensitivity to mild stress observed in adult mice. Juvenile STOP null mice also lacked disturbed locomotor sensitivity to MK-801, which was evident in adult mice. In contrast, juvenile STOP null mice exhibited a similar hypersensitivity to amphetamine as that found in adult mice. Thus, STOP null mice exhibited both a progression of locomotor activity defects over time and subtle alterations in the prepubertal period. We suggest that the pattern of locomotor disturbances observed in this study is related to altered dopaminergic reactivity in juvenile mice without major disturbance in glutamatergic transmission, whereas both neurotransmitter systems are impaired in adult mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.