Dendritic cells (DCs) are critical for launching of protective T cell immunity in response to viral infection. Viruses can directly infect DCs, thereby compromising their viability and suppressing their ability to activate immune responses. How DC function is maintained in light of this paradox is not understood. By analyzing the susceptibility of primary human DC subsets to viral infections, we report that CD141+ DCs have an innate resistance to infection by a broad range of enveloped viruses, including human immunodeficiency virus (HIV) and influenza virus. In contrast, CD1c+ DCs are susceptible to infection which enables viral antigen production but impairs their immune functions and survival. The ability of CD141+ DCs to resist infection is conferred by RAB15, a vesicle trafficking protein constitutively expressed in this DC subset. We show that CD141+ DCs rely on viral antigens produced in bystander cells to launch cross-presentation driven T cell responses. By dissociating viral infection from antigen presentation, this mechanism protects the functional capacity of DCs to launch adaptive immunity against viral infection.
Background: To date, very few cellular factors required for secretion of flaviviruses have been described. Results: Simultaneous depletion of class II Arf (Arf4 and Arf5) blocks dengue flavivirus secretion, without altering the constitutive secretory pathway. Dengue glycoprotein prM interacts with Arf4 and Arf5. Conclusion: Arf4 and Arf5 play a crucial role in dengue flavivirus secretion. Significance: Our findings reveal a molecular mechanism of dengue flavivirus secretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.