More than one century ago, piezoelectricity and ferroelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch to a resilient and circular economic model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-resources such as tartaric acid and polylactide, thereby significantly reducing the energy budget without requiring any sophisticated equipment. These piezoelectric devices are manufactured by liquid-phase epitaxy-grown Rochelle salt (RS) crystals in a 3D-printed poly(Lactic acid) (PLA) matrix, which is an artificial squared mesh which mimics anatomy of natural wood. This composite material can easily be produced in any fablab with renewable materials and at low processing temperatures, which reduces the total energy consumed. Manufactured biodegradable samples are fully recyclable and have good piezoelectric properties without any poling step. The measured piezoelectric coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE.
One century ago, ferroelectricity and then piezoelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch towards a resilient and circular economy model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-resources such as tartric acid and polylactide significantly reducing the energy budget without requiring any sophisticated equipement. These piezoelectric devices are manufactured by liquid phase epitaxy grown Rochelle salt (RS) crystals into a 3D printed poly(Lactic acid) (PLA) matrix being the artificial squared meshes which mimic the natural wood anatomy. This composite material can easily be produced in any fablab with renewable materials and at low processsing temperatures, reducing then the total energy consumed. Manufactured biodegradable samples are fully recyclable and have good piezoelectric properties without any pooling step. The measured piezoelectric coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.