This is an open access article under the terms of the Creat ive Commo ns Attri bution-NonCo mmercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Isatuximab, a monoclonal antibody (mAb) of immunoglobulin G (IgG) isotype, specifically targets the cluster of differentiation 38 antigen overexpressed in malignant plasma cells. Isatuximab is used to treat multiple myeloma (MM), characterized by the excessive production of abnormal "myeloma proteins" (M-proteins) that may interact with therapeutic IgG mAb on the neonatal Fc receptor (FcRn)-mediated recycling pathway. The clinical pharmacology profile of isatuximab was investigated by population pharmacokinetics (PKs) modeling in 476 patients with MM who received 1-20 mg/kg isatuximab either as single agent or in combination with pomalidomide-dexamethasone in 4 clinical trials. Isatuximab PKs were characterized by a two-compartment model with parallel time-varying linear clearance (CL) and nonlinear elimination. Due to a mechanismbased drug-disease interaction, patients secreting IgG M-protein exhibited a twofold lower drug exposure compared with patients with non-IgG MM. No dose adjustment was required based on MM immunoglobulin type because efficacy and safety profiles were comparable between IgG and non-IgG MM subpopulations. β2-microglobulin, body weight, sex, drug material, and race have a limited effect on drug exposure and do not require any dose adjustment. A typical 50% decrease in linear CL from initial treatment to steady-state was predicted, and this decrease correlated with the best overall response rate and was slower for patients with IgG MM. These findings suggest that the time-dependent effect of isatuximab is likely mediated by a combined factor of both disease state evolution and the perturbation of the FcRn-mediated recycling pathway. Isatuximab (SAR650984) is an immunoglobulin G (IgG) 1 monoclonal antibody (mAb) that selectively binds to the human cell surface antigen molecule classified as cluster of differentiation 38 (CD38). CD38 is expressed in a number of hematological malignancies, including multiple myeloma (MM). Isatuximab has been found to kill tumor cells via multiple biological mechanisms. 1-4 The isatuximab clinical program in MM includes single agent and combination studies, one of which was a phase Ib open-label study evaluating the combination of isatuximab at
This work proposes a model-based approach to help select the phase 1 dosing regimen for the antibody-drug conjugate (ADC) SAR408701 leveraging the available data for 2 other ADCs of the same construct: SAR3419 and SAR566658. First, monkey and human pharmacokinetic (PK) data of SAR566658 and SAR3419 were used to establish the appropriate allometric approach to be applied to SAR408701 monkey PK data. Second, a population pharmacokinetics-pharmacodynamics (PK-PD) model was developed to describe tumor volume evolution following SAR408701 injection in mice. Third, allometric approaches identified for SAR566658 and SAR3419 were applied to SAR408701 monkey PK data to predict the human PK profile. Both SAR566658 and SAR3419 human and monkey PK were best described by a 2-compartment linear model. The relative difference was less than 10% between predicted and observed clearance using allometric exponents of 0.75 and 1, respectively. Tumor volume evolution following SAR408701 injection was best described by a full Simeoni model with a plasma concentration threshold of 4.6 μg/mL for eradication in mice. Both allometric exponents were used to predict SAR408701 PK in human from PK in monkey and to identify the potential effective dosing regimens. This translational strategy may be a valuable tool to design future clinical studies for ADCs, to support selection of the most appropriate dosing regimen, and to estimate the minimal dose required to assure antitumor activity, according to the schedule used.
Addition of isatuximab (Isa) to pomalidomide/dexamethasone (Pd) significantly improved progression-free survival (PFS) in patients with relapsed/refractory multiple myeloma (RRMM). We aimed to characterize the relationship between serum M-protein kinetics and PFS in the phase 3 ICARIA-MM trial (NCT02990338), and to evaluate an alternative dosing regimen of Isa by simulation.Methods: Data from the ICARIA-MM trial comparing Isa 10 mg/kg weekly for 4 weeks then every 2 weeks (QW-Q2W) in combination with Pd versus Pd in 256 evaluable RRMM patients were used. A joint model of serum M-protein dynamics and PFS was developed. Trial simulations were then performed to evaluate whether efficacy is maintained after switching to a monthly dosing regimen.
Results:The model identified instantaneous changes (slope) in serum M-protein as the best on-treatment predictor for PFS and baseline patient characteristics impacting serum M-protein kinetics (albumin and β2-microglobulin on baseline levels, non-IgG type on growth rate) and PFS (presence of plasmacytomas). Trial simulations demonstrated that switching to a monthly Isa regimen at 6 months would shorten median PFS by 2.3 weeks and induce 42.3% patients to progress earlier.Conclusions: Trial simulations supported selection of the approved Isa 10 mg/kg QW-Q2W regimen and showed that switching to a monthly regimen after 6 months may reduce clinical benefit in the overall population. However, patients with good prognostic characteristics and with a stable, very good partial response may switch to a monthly regimen after 6 months without compromising the risk of disease progression. This hypothesis will be tested in a prospective clinical trial.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.