The present work was carried out in the scope of a numerical-experimental collaborative research program, whose main objective is to understand the mechanisms of instabilities in partial cavitating flow. Experiments and numerical simulations were conducted in the configuration of a 2D foil section located in a cavitation tunnel with various angles of attack. Several physical features have been pointed out by this joined approach. The role played by the re-entrant jet in the cloud shedding phenomenon was investigated at several incidences, and it was found that it is mainly responsible for the cavity break off. Moreover, a special flow pattern was evidenced for a 6° angle of attack: in that case a growth/destabilization cycle of the cavity is observed at a low frequency (~ 3.5 Hz), together with the periodic shedding of large bubble clusters (cloud cavitation).
Unsteady partial cavitation can cause damage to hydraulic machinery and understanding it requires knowledge of the basic physics involved. This paper presents the main results of a research program based on wall-pressure measurements aimed at studying unsteadiness in partial cavitation. Several features have been pointed out. For cavity lengths that did not exceed half the foil chord the cavity was stated to be stable. At the cavity closure a peak of pressure fluctuations was recorded originating from local cavity unsteadiness in the closure region at a frequency depending on the cavity length. Conversely, cavities larger than half the foil chord were stated to be unstable. They were characterized by a cavity growth/destabilization cycle settled at a frequency lower than the previous ones. During cavity growth, the closure region fluctuated more and pressure fluctuations traveling in the cavity wake were detected. When the cavity was half the foil chord, cavity growth was slowed down and counterbalanced by large vapor cloud shedding. When the cavity length was maximum (l/c∼0.7–0.8), it was strongly destabilized. The reason for such destabilization is discussed at the end of the paper. It is widely believed that the cavity instability originates from a process involving the shedding of vapor clouds during cavity growth, a re-entrant jet, and a shock wave phenomenon due to the collapse of a large cloud cavitation.
International audienceA performance prediction program dedicated to merchant ships was developed to assess fuel saving abilities of a kite. The solving of the parameterization presented led to kite velocities and tethers tensions prediction continuously along a flight path within the wind window, including especially wind gradient and ship velocity. Both static and dynamic flight cases were considered regarding optimization strategy for kite tow efficiency. For dynamic flight case azimuth, elevation and orientation of the trajectory are continuously optimized in the present algorithm. Magnitude orders of towing forces induced by the kite were compared to those obtained in the literature. Especially in upwind conditions, which are the most frequent point of sail for fast vessels, results are dramatically improved. Finally, using a 320 m2 kite on a 50,000 dwt tanker, the fuel saving predicted is about 10% for a wind velocity of 9.77 m s−1 (Beaufort 5) and reaches more than 50% for a wind velocity of 15.68 m s−1 (Beaufort 7)
This paper presents comparisons between two-dimensional (2D) CFD simulations and experimental investigations of the cavitating flow around a symmetrical 2D hydrofoil. This configuration was proposed as a test case in the "Workshop on physical models and CFD tools for computation of cavitating flows" at the 5th International Symposium on cavitation, which was held in Osaka in November 2003. The calculations were carried out in the ENSTA laboratory (Palaiseau, France), and the experimental visualizations and measurements were performed in the IRENav cavitation tunnel (Brest, France). The calculations are based on a single-fluid approach of the cavitating flow: the liquid/vapor mixture is treated as a homogeneous fluid whose density is controlled by a barotropic state law. Results presented in the paper focus on cavitation inception, the shape and the general behavior of the sheet cavity, lift and drag forces without and with cavitation, wall pressure signals around the foil, and the frequency of the oscillations in the case of unsteady sheet cavitation. The ability of the numerical model to predict successively the noncavitating flow field, nearly steady sheet cavitation, unsteady cloud cavitation, and finally nearly supercavitating flow is discussed. It is shown that the unsteady features of the flow are correctly predicted by the model, while some subtle arrangements of the two-phase flow during the condensation process are not reproduced. A comparison between the peer numerical results obtained by several authors in the same flow configuration is also performed. Not only the cavitation model and the turbulence model, but also the numerical treatment of the equations, are found to have a strong influence on the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.