One of the predicted biological responses to climate warming is the upslope displacement of species distributions. In the tropics, because montane assemblages frequently include local endemics that are distributed close to summits, these species may be especially vulnerable to experiencing complete habitat loss from warming. However, there is currently a dearth of information available for tropical regions. Here, we present a preliminary appraisal of this extinction threat using the herpetological assemblage of the Tsaratanana Massif in northern Madagascar (the island's highest massif), which is rich with montane endemism. We present meteorological evidence (individual and combined regional weather station data and reanalysis forecast data) for recent warming in Madagascar, and show that this trend is consistent with recent climate model simulations. Using standard moist adiabatic lapse rates, these observed meteorological warming trends in northern Madagascar predict upslope species displacement of 17–74 m per decade between 1993 and 2003. Over this same period, we also report preliminary data supporting a trend for upslope distribution movements, based on two surveys we completed at Tsaratanana. For 30 species, representing five families of reptiles and amphibians, we found overall mean shifts in elevational midpoint of 19–51 m upslope (mean lower elevation limit 29–114 m; mean upper elevation limit −8 to 53 m). We also found upslope trends in mean and median elevational observations in seven and six of nine species analysed. Phenological differences between these surveys do not appear to be substantial, but these upslope shifts are consistent with the predictions based on meteorological warming. An elevational range displacement analysis projects complete habitat loss for three species below the 2 °C ‘dangerous’ warming threshold. One of these species is not contracting its distribution, but the other two were not resampled in 2003. A preliminary review of the other massifs in Madagascar indicates potential similar vulnerability to habitat loss and upslope extinction. Consequently, we urgently recommend additional elevational surveys for these and other tropical montane assemblages, which should also include, when possible, the monitoring of local meteorological conditions and habitat change.
Summary 1.Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative studies have examined their relative contributions in tropical forests. 2. We used a short-term litterbag experiment to quantify the effects of litter quality, placement and mesofaunal exclusion on decomposition in 23 tropical forests in 14 countries. Annual precipitation varied among sites (760-5797 mm). At each site, two standard substrates ( Raphia farinifera and Laurus nobilis ) were decomposed in fine-and coarse-mesh litterbags both above and below ground for approximately 1 year. 3. Decomposition was rapid, with >95% mass loss within a year at most sites. Litter quality, placement and mesofaunal exclusion all independently affected decomposition, but the magnitude depended upon site. Both the average decomposition rate at each site and the ratio of above-to below-ground decay increased linearly with annual precipitation, explaining 60-65% of among-site variation. Excluding mesofauna had the largest impact on decomposition, reducing decomposition rates by half on average, but the magnitude of decrease was largely independent of climate. This suggests that the decomposer community might play an important role in explaining patterns of decomposition among sites. Which litter type decomposed fastest varied by site, but was not related to climate. 4. Synthesis . A key goal of ecology is to identify general patterns across ecological communities, as well as relevant site-specific details to understand local dynamics. Our pan-tropical study shows that certain aspects of decomposition, including average decomposition rates and the ratio of above-to below-ground decomposition are highly correlated with a simple climatic index: mean annual precipitation. However, we found no relationship between precipitation and effects of mesofaunal exclusion or litter type, suggesting that site-specific details may also be required to understand how these factors affect decomposition at local scales.
The amount of carbon stored in deadwood is equivalent to about 8% of global forest carbon stocks 1 . Deadwood decomposition is largely governed by climate [2][3][4][5] with decomposer groups, such as microbes and insects, contributing to variations in decomposition rates 2,6,7 . At the global scale, the contribution of insects to deadwood decomposition and carbon release remains poorly understood 7 . Here we present a field experiment of wood decomposition across 55 forest sites on six continents. We find that deadwood decomposition rates increase with temperature, with the strongest temperature effect at high precipitation levels. Precipitation affects decomposition rates negatively at low temperature and positively at high temperatures. As net effect, including direct consumption and indirect effects via interactions with microbes, insects accelerate decomposition in tropical forests (3.9% median mass loss per year).In temperate and boreal forests we find weak positive and negative effects with a median mass loss of 0.9% and -0.1% per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesised from empirical and remote sensing data. This allows for a first estimate of 10.9 ± 3.2 Pg yr -1 of carbon released from deadwood globally, with 93% originating from tropical forests. Globally, the net effect of insects accounts for a carbon flux of 3.2 ± 0.9 Pg yr -1 or 29% of the total carbon released from deadwood, which highlights the functional importance of insects for deadwood decomposition and the global carbon cycle.
BackgroundFrugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce.Methodology/Principal FindingsLemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees.Conclusions/SignificanceOur findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for their conservation.
Effects of forest fragmentation, introduced Rattus rattus and the role of exotic tree plantations and secondary vegetation for the conservation of an endemic rodent and a small lemur in littoral forests of southeastern Madagascar Animal Conservation (2001) 4, 175-183 AbstractWe sought to assess the effects of forest fragmentation, introduced Rattus rattus, exotic tree plantations and secondary vegetation on the endemic rodent Eliurus webbi (Nesomyinae) and the lemur Microcebus murinus in the littoral forests of southern Madagascar. For E. webbi the number of individuals caught, the body mass of males and the percentage of females in the population were positively correlated with the size of the forest fragments. Capture rates and population characteristics of the other two species were uncorrelated with fragment size. None of the endemic species was caught outside the native forest while R. rattus inhabited all vegetation formations except for a newly planted corridor of tree saplings. Capture rates of both endemic species were uncorrelated with the number of R. rattus caught at the same site and thus did not indicate replacement of native species by R. rattus. The study demonstrated negative effects of fragmentation on capture rates of E. webbi and changes in their population characteristics. Exotic tree plantations or secondary vegetation seem to represent unsuitable or marginal habitats for the endemic species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.