This article examines the aerodynamic performance increase of an Airbus A320 aerofoil thanks to morphing of the near-trailing-edge region in transonic regime corresponding to cruise conditions. The study has been carried out by numerical simulation at Reynolds number Re = 2.06 × 10 6 and Mach number of 0.78, by using the NSMB code (Navier-Stokes MultiBlock) including adapted turbulence modelling approaches sensitised in capturing coherent structures development.
Purpose
The purpose of this study illustrates the morphing effects around a large-scale high-lift configuration of the Airbus A320 with two elements airfoil-flap in the take-off position. The flow around the airfoil-flap and the near wake are analysed in the static case and under time-dependent vibration of the flap trailing-edge known as the dynamic morphing.
Design/methodology/approach
Experimental results obtained in the subsonic wind tunnel S1 of Institut de Mécanique des Fluides de Toulouse of a single wing are discussed with high-fidelity numerical results obtained by using the Navier–Stokes multi-block (NSMB) code with advanced turbulent modelling able to capture the predominant instabilities and coherent structure dynamics. An explanation of the dynamic time-dependent grid deformation is provided, which is used in the NSMB code to simulate the flap’s trailing-edge deformation in the morphing configuration. Finally, power spectral density is performed to reveal the coherent wake structures and their modification because of the morphing.
Findings
Frequency of vibration and amplitude of deformation effects are investigated for different morphing cases. Optimal morphing regions at a specific frequency and a slight deformation were able to attenuate the predominant natural shear-layer frequency and to considerably decrease the width of the von Kármán vortices with a simultaneous increase of aerodynamic performances.
Originality/value
The new concept of future morphed wings is proposed for a large scale A320 prototype at the take-off position. The dynamic morphing of the flap’s trailing-edge is simulated for the first time for high-lift two-element configuration. In addition, the wake analysis performed helped to show the turbulent structures according to the organised eddy simulation model.
The present study concerns the use of unsteady numerical simulations by means of Navier Stokes Multi Block (NSMB) solver including both high order schemes and turbulence resolving methods. Firstly, this work attempts to highlight the role of the morphing applied to the supercritical Airbus A320 wing and flap in the trailing-edge for a Reduced Scale (RS) prototype at the clean position, this morphing includes a slight deformation of the trailing edge with a selected frequency and amplitude, which has an impact on the flow near the trailing edge and specially in the wake structures. This solution can transform the 3-dimensional chaotic flow into a 2-dimensional one by enhancing coherence of 2D structures rows of von Kármán vortices. In Addition, the highlift A320 wing-flap at the takeoff position in Large-Scale (LS) configuration have been studied using advanced hybrid models DDES, the Organised Eddy Simulation OES and SST for the RANS regions as well as LES Smagorinsky model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.