Photodynamic therapy (PDT) is an emerging treatment modality for various diseases, especially for cancer therapy. Although high efficacy is demonstrated for PDT using standardized protocols in nonhyperkeratotic actinic keratoses, alternative light doses expected to increase efficiency, to reduce adverse effects or to expand the use of PDT, are still being evaluated and refined. We propose a comparison of the three most common light doses in the treatment of actinic keratosis with 5-aminolevulinic acid PDT through mathematical modeling. The proposed model is based on an iterative procedure that involves determination of the local fluence rate, updating of the local optical properties, and estimation of the local damage induced by the therapy. This model was applied on a simplified skin sample model including an actinic keratosis lesion, with three different light doses (red light dose, 37 J∕cm2, 75 mW∕cm2, 500 s; blue light dose, 10 J∕cm2, 10 mW∕cm2, 1000 s; and daylight dose, 9000 s). Results analysis shows that the three studied light doses, although all efficient, lead to variable local damage. Defining reference damage enables the nonoptimal parameters for the current light doses to be refined and the treatment to be more suitable.
BackgroundPreterm birth is a major public health problem in developed countries. In this context, we have conducted research into outpatient monitoring of uterine electrical activity in women at risk of preterm delivery. The objective of this preliminary study was to perform automated detection of uterine contractions (without human intervention or tocographic signal, TOCO) by processing the EHG recorded on the abdomen of pregnant women. The feasibility and accuracy of uterine contraction detection based on EHG processing were tested and compared to expert decision using external tocodynamometry (TOCO) .MethodsThe study protocol was approved by local Ethics Committees under numbers ID-RCB 2016-A00663-48 for France and VSN 02-0006-V2 for Iceland.Two populations of women were included (threatened preterm birth and labour) in order to test our system of recognition of the various types of uterine contractions.EHG signal acquisition was performed according to a standardized protocol to ensure optimal reproducibility of EHG recordings. A system of 18 Ag/AgCl surface electrodes was used by placing 16 recording electrodes between the woman’s pubis and umbilicus according to a 4 × 4 matrix. TOCO was recorded simultaneously with EHG recording.EHG signals were analysed in real-time by calculation of the nonlinear correlation coefficient H2. A curve representing the number of correlated pairs of signals according to the value of H2 calculated between bipolar signals was then plotted. High values of H2 indicated the presence of an event that may correspond to a contraction.Two tests were performed after detection of an event (fusion and elimination of certain events) in order to increase the contraction detection rate.ResultsThe EHG database contained 51 recordings from pregnant women, with a total of 501 contractions previously labelled by analysis of the corresponding tocographic recording. The percentage recognitions obtained by application of the method based on coefficient H2 was 100% with 782% of false alarms. Addition of fusion and elimination tests to the previously obtained detections allowed the false alarm rate to be divided by 8.5, while maintaining an excellent detection rate (96%).ConclusionThese preliminary results appear to be encouraging for monitoring of uterine contractions by algorithm-based automated detection to process the electrohysterographic signal (EHG). This compact recording system, based on the use of surface electrodes attached to the skin, appears to be particularly suitable for outpatient monitoring of uterine contractions, possibly at home, allowing telemonitoring of pregnancies. One of the advantages of EHG processing is that useful information concerning contraction efficiency can be extracted from this signal, which is not possible with the TOCO signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.