AEROSPATIALE, leading a European team, has just conducted a successful study, under ESA contract, to demonstrate the feasibility of a spaceborne Doppler Wind Lidar instrument meeting the scientific requirements of wind velocity measurements from space with high spatial resolution.A first parametric investigation, based upon the initial set of mission requirements, and supported by dedicated models and detailed trade-off studies, took account of capabilities of most promising signal processing algorithms and calibration/validation constraints: it yielded a large conically scanned instrument deemed technologically risky.A risk analysis was then carried out to propose a less challenging instrument meeting most key mission requirements. The fixed line-of-sight concept with return signal accumulation appeared as most attractive. A second set of requirements agreed upon by scientific users was therefore issued, with relaxed constraints mainly on horizontal resolution, keeping roughly the same level of wind velocity measurement accuracy. A second instrument and subsystem trade-off was then performed to eventually produce an attractive instrument concept based upon a pair of small diameter telescopes each one associated to one scanning mirror rotating stepwise around the telescope axis, which drastically reduces the detection bandwidth.Following the main contract, studies of accommodation on the International Space Station have been performed, confirming the interest of such an instrument for wind measurements from space.
Ir-i meteorological and climatological fields, the scientific community will increasingly need globalmeasurements of key atmospheric parameters with high spatial resolution (horizontal as well as vertical) : the spaceborne lidars are the most suitable instruments for those missions. Ihile backscatter lidar (ATLID, currently studied at ESA) is presently first candidate for space deployment, the next generation of lidars will be DIAL and Doppler wind lidars, presenting a higher level of complexity, mainly due to the large power and complex signal processing required. The present considered wind lidars are based on CO2 lasers, whose space compliance still needs confirmation, while alexandrite lasers are considered for water vapor and temperature measurements, but they need flashlamp pumping which poses a lot of severe thermal constraints and lifetime problems: on the other side, the recent developments achieved in solid-state technology allow to envisage diode pumping as most promising possibility for both previous applications. O-8194-1513-8/94/$6.OO SPIE VoL 2209 / 103 Downloaded From: http://proceedings.spiedigitallibrary.org/ on 06/25/2016 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx
No abstract
Thales Alenia Space has been involved in the design and the development of space observation instruments for over 40 years. This paper will explain why active optics is needed for next generation of instruments for Earth observation. We will also describe what kind of solution is preferred and why. We will give an overview of the development status on the associated technologies. Indeed, the future missions will have to deal with better performance, better optical quality while from manufacturing point of view, the total mass, the development schedule and the final cost have to be reduced. These constraints induce a new generation of solutions based on large entrance optics associated to high lightweight ratio which naturally provide solutions sensitive to gravity deformation. In these conditions, the enhancement of the final performance can only be guaranteed by using active optics in flight. A deformable mirror is therefore foreseen to be implemented in future large telescopes in order to correct manufacturing residues, ground/flight evolution including gravity. Moreover, low mass and low cost require more compact designs which entail solutions more sensitive to misalignment. An active positioning mechanism is then also needed in order to correct the telescope alignment during operation conditions. Thales Alenia Space has been selected by CNES to develop and qualify active optics building blocks and then to test and demonstrate the improvement that new active technologies can bring in a full size instrument representative of the next generation of observation instruments. An overview of the current development status and the achievable performances is given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.