DNA repair mechanisms constitute major defences against agents that cause cancer, degenerative disease and aging. Different repair systems cooperate to maintain the integrity of genetic information. Investigations of DNA repair involvement in human pathology require an efficient tool that takes into account the variety and complexity of repair systems. We have developed a highly sensitive damaged plasmid microarray to quantify cell lysate excision/synthesis (ES) capacities using small amounts of proteins. This microsystem is based on efficient immobilization and conservation on hydrogel coated glass slides of plasmid DNA damaged with a panel of genotoxic agents. Fluorescent signals are generated from incorporation of labelled dNTPs by DNA excision-repair synthesis mechanisms at plasmid sites. Highly precise DNA repair phenotypes i.e. simultaneous quantitative measures of ES capacities toward seven lesions repaired by distinct repair pathways, are obtained. Applied to the characterization of xeroderma pigmentosum (XP) cells at basal level and in response to a low dose of UVB irradiation, the assay showed the multifunctional role of different XP proteins in cell protection against all types of damage. On the other hand, measurement of the ES of peripheral blood mononuclear cells from six donors revealed significant diversity between individuals. Our results illustrate the power of such a parallelized approach with high potential for several applications including the discovery of new cancer biomarkers and the screening of chemical agents modulating DNA repair systems.
Esophageal adenocarcinoma (EA) incidence is increasing rapidly and is associated with a poor prognosis. Identifying biomarkers of disease development and progression would be invaluable tools to inform clinical practice. Two-dimensional polyacrylamide gel electrophoresis was used to screen 10 esophageal cell lines representing distinct stages in the development of esophageal cancer. Thirty-three proteins were identified by MALDI-TOF-MS which demonstrated differences in expression across the cell lines. Western blotting and qRT-PCR confirmed increased cathepsin D and aldo-keto reductases 1C2 and 1B10 expression in metaplastic and dysplastic cell lines. Expression of these proteins was further assessed in esophageal epithelium from patients with nonerosive (NERD) and erosive gastro-esophageal reflux disease, Barrett's esophagus (BE) and EA. When compared with normal epithelium of NERD patients, (i) cathepsin D mRNA levels demonstrated a stepwise increase in expression (p<0.05) in erosive, metaplastic and EA tissue; (ii) AKR1B10 expression increased (p<0.05) 3- and 9-fold in erosive and Barrett's epithelium, respectively; and (iii) AKR1C2 levels increased (p<0.05) in erosive and Barrett's epithelium, but were reduced (p<0.05) in EA. These proteins may contribute to disease development via effects on apoptosis, transport of bile acids and retinoid metabolism and should be considered as candidates for further mechanistic and clinical investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.