Directed evolution has been used for decades to engineer biological systems from the top-down. Generally, it has been applied at or below the organismal level, by iteratively sampling the mutational landscape in a guided search for genetic variants of higher function. Above the organismal level, a small number of studies have attempted to artificially select microbial communities and ecosystems, with uneven and generally modest success. Our theoretical understanding of artificial ecosystem selection is still limited, particularly for large assemblages of asexual organisms, and we know little about designing efficient methods to direct their evolution. To address this issue, we have developed a flexible modeling framework that allows us to systematically probe any arbitrary selection strategy on any arbitrary set of communities and selected functions, in a wide range of ecological conditions. By artificially selecting hundreds of in-silico microbial metacommunities under identical conditions, we examine the fundamental limits of the two main breeding methods used so far, and prescribe modifications that significantly increase their power. We identify a range of directed evolution strategies that, particularly when applied in combination, are better suited for the top-down engineering of large, diverse, and stable microbial consortia. Our results emphasize that directed evolution allows an ecological structure-function landscape to be navigated in search for dynamically stable and ecologically and functionally resilient high-functioning communities.1 .
Understanding the ecological and evolutionary processes determining the outcome of biological invasions has been the subject of decades of research with most work focusing on macro-organisms. In the context of microbes, invasions remain poorly understood despite being increasingly recognised as important. To shed light on the factors affecting the success of microbial community invasions, we perform simulations using an individual-based nearly neutral model that combines ecological and evolutionary processes. Our simulations qualitatively recreate numerous empirical patterns and lead to a description of five general rules of invasion: 1) larger communities evolve better invaders and better defenders; 2) where invader and resident fitness difference is large invasion success is essentially deterministic; 3) propagule pressure contributes to invasion success if and only if invaders and residents are competitively similar; 4) increasing the diversity of invaders has a similar effect to increasing the number of invaders; 5) more diverse communities better resist invasion.
Directed evolution is a form of artificial selection that has been used for decades to find biomolecules and organisms with new or enhanced functional traits. Directed evolution can be conceptualized as a guided exploration of the genotype–phenotype map, where genetic variants with desirable phenotypes are first selected and then mutagenized to search the genotype space for an even better mutant. In recent years, the idea of applying artificial selection to microbial communities has gained momentum. In this article, we review the main limitations of artificial selection when applied to large and diverse collectives of asexually dividing microbes and discuss how the tools of directed evolution may be deployed to engineer communities from the top down. We conceptualize directed evolution of microbial communities as a guided exploration of an ecological structure–function landscape and propose practical guidelines for navigating these ecological landscapes. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.